Ефим Балабанов - Ядерные реакторы
- Название:Ядерные реакторы
- Автор:
- Жанр:
- Издательство:Военное Издательство Министерства обороны Союза ССР
- Год:1957
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ефим Балабанов - Ядерные реакторы краткое содержание
2 0
/i/47/718747/Grinya2003.png
0
/i/47/718747/CoolReader.png
Ядерные реакторы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Современная физика учит нас, что движение элементарных частиц можно рассматривать как распространение волны. Каждой скорости (энергии) частицы соответствует определенная длина волны. Несомненно, что движение частиц в самом ядре имеет также волновой характер. А если это так, то здесь действительно можно говорить о резонансе: совпадении длин волн частицы и ядра. В этом случае их взаимодействие усиливается. В школе нам показывали опыты с резонансом двух настроенных в унисон камертонов. Звучание одного камертона вызывает звучание другого.
Ядро является очень сложной системой, и поэтому у него может быть несколько уровней энергии, то есть несколько частот или несколько длин волн. Частица, обладающая одним из значений энергии, соответствующих уровням ядра, всегда активнее вступает в ядерную реакцию, чем другие частицы.
Вспомните одну из любимых детских игр — китайский бильярд. Хороший игрок знает, что для того, чтобы попасть в нужную лунку, надо шарик выпустить с точно определенной скоростью. Очень быстрый шарик проскочит далеко и выбьет мало очков. Шарик с малой скоростью не дойдет до лунки с большим числом очков.
Конечно, ядро сложнее китайского бильярда, но там тоже можно представить себе такие уровни (лунки), в которые может попасть заряженная частица, обладающая только определенной скоростью. При этом происходит либо захват частицы с испусканием гамма-кванта с определенной длиной волны (энергией), либо последующий распад ядра с выбрасыванием одной или нескольких частиц.
В качестве примера резонансной реакции можно привести такую:
Эта реакция отличается от описанной ранее тем, что вначале получается гамма-квант, а лишь затем ядро бериллия распадается на две альфа-частицы. Она происходит лишь при определенной энергии ядра водорода (протона), равной приблизительно 0,440 Мэв.
Незаряженному нейтрону проникнуть в ядро легче, чем заряженной частице, так как он не взаимодействует с электрическим зарядом ядра. Иногда нейтрону достаточно пройти вблизи ядра, и он будет как бы втянут ядерными силами внутрь ядра и вызовет ядерную реакцию. Тогда вероятность осуществления ядерной реакции с нейтроном в десятки тысяч раз больше, нежели с заряженной частицей.
Но и нейтроны, так же как заряженные частицы, вступают в резонансные реакции. Например, происходит резонансный захват ядром урана 238всех нейтронов, обладающих определенной энергией, соответствующей какой-то средней скорости. С этой важной реакцией мы познакомимся позже.
Электронный распад ядра.Мы видели, что многие ядерные превращения сопровождаются вылетом электронов.
Возникает законный вопрос: откуда же берутся электроны в ядре? Ведь ядро состоит только из протонов и нейтронов.
Остается предположить, что электрон рождается в ядре в момент его превращения. При распаде, например, трития, в ядре которого один протон и два нейтрона, получается электрон и ядро изотопа гелия 3, содержащее два протона и один нейтрон. Выходит, что при излучении электрона из ядра один из нейтронов превратился в протон.
«Ну что же здесь странного? — скажете вы. — Очевидно, нейтрон — сложная частица и состоит из протона и электрона».
Но факты опровергают это предположение.
Есть много ядер, которые излучают при распаде не электроны, а положительно заряженные частицы — позитроны. Так, например, азот 13, о котором упоминалось раньше, является радиоактивным изотопом. Его ядро, излучая позитрон, переходит в ядро углерода 13:
то есть вместо семи протонов и шести нейтронов в новом ядре будет уже шесть протонов и семь нейтронов. Здесь мы имеем превращение протона в нейтрон и позитрон. Становится ясным, что представление о том, что нейтрон состоит из протона и электрона, несовместимо с существованием радиоактивности, с образованием позитрона.
Современная теория утверждает, что протоны и нейтроны в процессе их взаимодействия в ядре могут превращаться друг в друга с испусканием электрона или позитрона. Эти частицы и излучаются ядром при радиоактивном распаде.
Что же происходит с ядром после этого?
Излучение электрона связано с тем, что один из нейтронов превращается в протон, что, естественно, приводит к увеличению положительного заряда ядра. Мы получаем ядро следующего элемента периодической системы. Например, при распаде трития (изотопа водорода) образуется изотоп гелия.
В случае позитронной радиоактивности, наоборот, протон превращается в нейтрон, ядро теряет положительный заряд, равный заряду протона, и номер элемента становится на единицу меньше. Это происходит, например, при превращении азота 13в углерод 13.
Однако в поведении радиоактивного ядра при испускании электрона и позитрона есть что-то странное. В каждом подобном акте ядро теряет вполне определенную энергию. Можно ожидать, что энергия (или скорость) всех электронов (или позитронов), испускаемых ядрами этого сорта, будет одинакова. Физики сумели измерить эту энергию, и неожиданно оказалось, что излучаемые электроны обладают самыми различными энергиями — от очень малой до максимальной энергии, теряемой радиоактивным ядром.
Тут обнаружилось какое-то неблагополучие. Ядро передает электрону совершенно определенную энергию. Но в процессе этой передачи часть энергии где-то пропадает.
Явное несоответствие с законом сохранения энергии, который утверждает, что энергия никогда не возникает и не пропадает!
Но, может быть, часть энергии уносят с собой гамма-кванты, часто сопровождающие испускание электрона или позитрона?
Однако измерения показали, что гамма-квант уносит с собой всегда определенную часть энергии и испускается позже электрона. Кроме того, энергия, теряемая ядром, всегда равна сумме энергии гамма-кванта и максимальной энергии электрона.
А если вылетевший электрон не обладает максимальной энергией, то куда же девается ее часть, недостающая до максимальной?
Может быть, можно объяснить странное поведение радиоактивного ядра, если предположить, что из него одновременно вылетают два электрона?
Действительно, в этом случае у каждого из электронов может быть самая различная энергия. Сумма этих энергий должна быть равна энергии, теряемой ядром. Однако такое предположение сразу же опровергается тем обстоятельством, что ядро при электронном или позитронном распаде всегда теряет или приобретает заряд, соответствующий одному элементарному заряду.
Такое положение привело к тому, что реакционно настроенная часть зарубежных физиков снова стала утверждать, что закон сохранения энергии — один из самых фундаментальных законов природы — не выполняется в атомных и ядерных процессах.
Читать дальшеИнтервал:
Закладка: