Алексей Левин - Белые карлики. Будущее Вселенной
- Название:Белые карлики. Будущее Вселенной
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9373-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Левин - Белые карлики. Будущее Вселенной краткое содержание
А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных.
История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса.
Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.
Белые карлики. Будущее Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но это далеко не все. Сейсмология белых карликов может также дать информацию о дипольном магнитном моменте нейтрино. Согласно Стандартной модели элементарных частиц, он равен нулю, однако, как допускают многие теоретики, в реальности может иметь ненулевое значение. Наконец, не исключено, что анализ пульсаций белых карликов позволит ответить на вопрос, не изменяется ли во времени и пространстве гравитационная постоянная, которая в эйнштейновской ОТО считается абсолютной константой. Вот как много можно получить (или хотя бы надеяться получить) от этих догорающих «звездных останков»!
10. Вырождение в физическом смысле
До сих пор речь шла о феноменологии белых карликов. Но возникает естественный вопрос — чем объяснить столь высокую плотность их вещества? Интересно, что в общих чертах ответ был найден, когда группа известных белых карликов ограничивалась одной лишь классической триадой.
Первую математическую модель белого карлика построил английский физик Ральф Фаулер. Однако исторической полноты ради начать надо не с него. Во второй половине XIX в. американский инженер Джонатан Гомер Лейн, профессор механики Политехнического университета в Аахене Август Риттер и великий британский физик-универсал Уильям Томсон, более известный как лорд Кельвин, разработали весьма продвинутые для своего времени математические модели Солнца и звезд, основанные на классической термодинамике и физике газов. Детальный рассказ об этой теории заводит нас слишком далеко в историю астрономии, но одну вещь нельзя не упомянуть. Все трое исходили из предположения, что давление в любой точке внутри звезды пропорционально локальной плотности ее вещества, возведенной в некоторую степень. Эта зависимость называется политропным уравнением состояния вещества. Например, для идеального газа (вспомним школьную физику) давление при изотермических процессах (то есть при постоянной температуре) пропорционально плотности, поэтому показатель степени в данном случае равен единице; если процесс адиабатический — он больше единицы (5/3 для одноатомного газа). Несмотря на то что эти модели значительно упрощали реальную ситуацию, они позволяли воспроизвести в теории целый ряд реальных особенностей поведения звездной материи.
В качестве примера стоит привести очень нетривиальную для своего времени модель возникновения Солнца (а фактически и любых звезд) из газовых сгущений, которую в 1869–1870 гг. предложил Лейн. Он рассматривал сферическое облако идеального газа, свободно парящее в космическом пространстве. Когда под действием взаимного притяжения частицы газа стягиваются к центру облака, их потенциальная энергия уменьшается (подобно уменьшению потенциальной энергии тела, падающего на землю). Коль скоро полная энергия газа должна сохраниться, средняя скорость хаотического движения его частиц возрастает — и, следовательно, температура газа увеличивается. Лейн показал, что коллапсирующее облако может выбросить в пространство часть своей энергии в виде теплового излучения, но при определенных условиях все равно продолжит стабильно нагреваться. Описывая эти процессы с помощью дифференциальных уравнений, Лейн исходил из того, что состояние газа можно смоделировать посредством степенной зависимости давления от плотности. В своих вычислениях он испробовал политропы с показателями 5/3 и 1,4.
Из теории Лейна следует, что сильнее всего температура повышается в центре газового сгустка. Фактически на ее основе можно показать (правда, сам Лейн этого не сделал), что температура в центре Солнца должна измеряться миллионами кельвинов. Получается, что изначально холодное скопление газа может стянуться и разогреться столь сильно, что превратится в звезду. Ее сияние в модели Лейна обеспечивается продолжающимся стягиванием к центру и потерей потенциальной энергии тяготения, которая и служит единственным источником энергии излучения.
Лейн пошел дальше. Он понял (или догадался), что при очень высокой температуре и плотности центральной области звезды вещество перестанет подчиняться простым газовым законам — а другие тогда не были известны. Поэтому он вполне логично предположил, что по мере такой трансформации оно будет все сильнее сопротивляться стягивающему действию тяготения. В результате гравитационный коллапс замедлится (или прекратится вовсе), компенсация уносимой излучением энергии уменьшится (или полностью занулится), звезда начнет остывать и в конце концов превратится в небольшое (а потому очень плотное), холодное и темное космическое тело.
Такова в общих чертах суть предложенной Лейном теории непрерывной эволюции газовых звезд — по сути, первой во всей истории наук о Вселенной (позднее сходные идеи развивал Риттер, который посвятил этой теме 18 статей). В Европе ее заметили лишь в 1880-е гг., после того как на нее неоднократно с большим уважением ссылался Томсон, получивший в 1892 г. титул барона Кельвина. На протяжении нескольких десятилетий эта теория оказывала немалое воздействие на развитие теоретической астрофизики. Новизна подхода Лейна и Риттера видна уже из того, что, каким бы странным это ни казалось сейчас, в те времена астрономы еще не имели данных, позволявших утверждать, что звездное вещество пребывает в газообразном состоянии. Идея Лейна о гравитационном разогреве сгущающихся газовых облаков как прелюдии к образованию звезд в общих чертах сохранила силу и сегодня. Разумеется, он не мог не только предполагать, но даже фантазировать, что рождение звезды обусловлено поджогом термоядерного горения водорода, которое и подпитывает ее излучение. Астрофизика дошла до такого понимания лишь в конце 1930-х гг., почти через шесть десятков лет — а это очень долгий срок. Так что восхитимся глубиной прозрения Лейна и не будем смеяться над его ошибками. И не забудем, что единственная статья по теории звезд [14] On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment // American Journal of Science ( July 1870), Series 2, 50: 57–74.
принесла ему членство в Национальной академии наук США, которое он обрел в апреле 1872 г., а потомки назвали в его честь один из кратеров на обратной стороне Луны.
В 1916–1918 гг. теорией звездных структур вплотную занялся профессор астрономии и натуральной философии Кембриджского университета и директор университетской обсерватории Артур Стэнли Эддингтон (чье имя в 1919 г. прогремело на весь мир в связи с наблюдением изгибания звездных лучей в поле тяготения Солнца, предписанного ОТО). Эддингтон существенно улучшил старые политропные модели, построив общую теорию стабильных звезд. Она учитывала световое давление и ряд факторов, не известных в XIX в. Он также пришел к совершенно правильному заключению, что источник внутренней энергии звезды должен находиться в ее центре, хотя природа этого источника, конечно же, не была еще изучена. Эддингтон разрабатывал свою теорию и в последующие годы. В окончательном виде он изложил ее в фундаментальной монографии The Internal Constitution of the Stars [15] Arthur. The Internal Constitution of the Stars. Cambridge: University Press, 1926.
, вышедшей в свет в 1926 г. В частности, он показал, что при температурах звездных недр атомы лишаются всех или почти всех электронов и превращаются в положительные ионы, омываемые электронным морем.
Интервал:
Закладка: