Скотт Бембенек - Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
- Название:Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Скотт Бембенек - Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали краткое содержание
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Атом Бора
Модель Резерфорда была большим шагом навстречу пониманию атома. Согласно экспериментальным данным, собранным Резерфордом и его исследователями, наиболее правдоподобной картиной атома была та, где очень компактное ядро находится в центре, окруженное обращающимися вокруг него электронами. Точнее, можно представить электроны, обращающиеся вокруг ядра-центра подобно тому, как планеты обращаются вокруг Солнца. К сожалению, этот вариант атома неустойчив.
Согласно известным на тот момент законам физики (классической физики) электрон, движущийся таким образом, излучал бы свет, что для электрона является потерей энергии. Эта потеря проявляется в виде уменьшающейся потенциальной энергии электрона, означающей, что он сдвигается к ядру.
Чтобы понять, как потенциальная энергия отрицательно заряженного электрона «ощущает» положительно заряженное ядро, представим резиновую ленту, прикрепленную одним концом к стене, когда мы начали растягивать ее за другой конец. Растягивая ее, мы достигнем момента, когда почувствуем напряжение в резинке, сопротивляющейся дальнейшему растяжению и стремящейся сжаться обратно. В этот момент потенциальная энергия очень велика, но, если мы перестанем растягивать резинку и позволим ей сжаться, сопротивляющееся напряжение уменьшится, как и потенциальная энергия.
Можно представить, что потенциальная энергия между электроном и ядром является результатом растяжения невидимой «резинки», связанной одним из концов с электроном, а другим — с ядром, зафиксированным в центре атома. Полностью упасть на ядро электрону не дает равенство натяжения «резинки» в сторону ядра и выталкивание центробежной силы наружу.
Реальная проблема состоит в том, что электрон продолжает излучать свет, тем самым теряя энергию, и становится все ближе и ближе к ядру, пока окончательно не столкнется с ядром, и атом не разрушится. Такова была судьба (классического) варианта атома, предложенного Резерфордом. А Бор вообще не беспокоился.
Благодаря своей диссертационной работе Бор был уже хорошо знаком с неудачами классической физики. Так он совсем не удивился, когда увидел, как она терпела поражение в области атомов: «Кажется, этого и стоило ожидать, поскольку, по-видимому, строго доказано, что (классическая физика) не может объяснить факты, появляющиеся в рамках проблем, касающихся отдельных атомов».
Каким образом Бор примирил на первый взгляд не вызывающий сомнения атом Резерфорда с неустойчивостью, предсказанной классической механикой? Введением новой гипотезы: «Механические основания (классической физики) не получат никаких шансов…»
Бор предположил, что энергия связи электрона — энергия, требуемая для того, чтобы вывести электрон из самого атома, его удерживающего — может принимать одно из значений дискретного набора, а не любое. Другими словами, так же как и в случае резонаторов Планка, энергии связи электронов принимают квантованные значения:
Eс = Cnh ω,
где Eс — энергия связи, C — постоянная величина, ω — частота обращения электрона по орбите, которая просто равна скорости, деленной на полную длину орбиты (предполагалось, что орбита круговая, так что ее длина — просто длина окружности), а n = 1, 2, 3 и т. д. Поразительным в этой формуле является ее сходство с выражением Планка для энергии резонатора:
E резонатора= mh ν.
Вспомним, что ν в последнем выражении — это частота колебаний резонатора (опять же, ω в формуле Бора является частотой обращения электрона), а m = 1, 2, 3 и т. д. То есть Бор проводит формальную аналогию с квантом энергии Планка и тем самым дает ей реальный физический смысл. В последующие годы Бор замечал: «В воздухе витала идея попробовать применить в этом случае предположения Планка».
Помимо квантования энергии связи, Бор также получил результаты, показывающие, что расстояние электрона от ядра, или размер его орбиты, также квантованы (как и его угловой, то есть орбитальный момент).
В физической картине, воплощенной в атоме Бора, электроны, окружающие ядро, находятся на дискретных орбитах с дискретными энергиями. Как и прежде, под «дискретным» мы понимаем квантованное, и для атома Бора это применимо как к орбитам, так и к энергиям, тогда как в случае резонаторов Планка квантованной была всего лишь энергия. Квантование непосредственно связано с квантовым числом n , и большее значение n соответствует орбите, расположенной дальше от ядра с большей по абсолютному значению энергией связи.
Хотя квантовое число Бора n соответствует m из выражения Планка, его роль более значительна. Квантовое число описывает реальное квантовое состояние электрона, и, согласно гипотезе Бора, орбита электрона устойчива только в этих квантовых состояниях, поэтому он не станет неизбежно снижаться, приближаясь по спирали к ядру. Заметим, что, в отличие от выражения Планка, где m может равняться нулю, в формуле Бора n не может быть нулевым, иначе это соответствовало бы квантовому состоянию, в котором электрон уже упал на ядро, и опять-таки мы бы пришли к гибели атома.
Ко времени выдвижения теории Бора прошло больше пятидесяти лет после того, как работы Кирхгофа и Бунзена показали, что атомы излучают уникальные «отпечатки пальцев», состоящие из дискретного набора спектральных линий с теми же частотами, на которых атомы будут поглощать. Если в экспериментальной стороне спектроскопии в течение тех лет отмечался значительный прогресс, с теорией дело обстояло иначе.
Открыв электрон, Томсон спровоцировал обсуждение их роли в спектре атома, но никакого продвижения в этой области не было. Стало казаться, что теорию никогда не обнаружат. В 1882 году физик Артур Шустер (1851–1934) очень хорошо выразил эти переживания, сказав:
«Перспективный объект спектроскопии — изучить колебания атомов и молекул, чтобы получить всю возможную информацию о природе сил, связывающих их воедино… Но нам не следует так скоро ожидать открытие какого-то грандиозного и очень общего закона: состав того, что мы называем молекулой, очень сложен, а трудность проблемы настолько велика, что если бы не первостепенная важность результатов, которые, как мы можем надеяться, будут окончательно получены, то всему в этой проблеме, за исключением ее наиболее оптимистичных сторон, возможно, было бы отказано во включении в исследование, которое даже после многих лет работы может оказаться безуспешным».
Бор подготовил для Резерфорда проект со своими исходными идеями, касающимися атомов (в нашем предыдущем обсуждении кратко изложены его наиболее значительные части), в июле 1912 года, но ни слова не сказал об атомных спектрах. На то, чтобы Бор стал серьезно рассматривать атомные спектры в рамках своей теории, уйдет еще год. Его интерес вызвала занимательная беседа с Гансом Мариусом Хансеном (1886–1956).
Читать дальшеИнтервал:
Закладка: