Скотт Бембенек - Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Тут можно читать онлайн Скотт Бембенек - Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - бесплатно ознакомительный отрывок. Жанр: sci-phys. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Скотт Бембенек - Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали краткое содержание

Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - описание и краткое содержание, автор Скотт Бембенек, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - читать онлайн бесплатно ознакомительный отрывок

Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Скотт Бембенек
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оказывается, вынужденное излучение крайне важно для правильного вида закона излучения; без него получится закон излучения Вина. Тогда становится ясно, что вынужденное излучение важно для получения низкочастотной части закона излучения. Другим сокровищем теории Эйнштейна было правило частот Бора как естественное следствие теории. Однако Эйнштейн еще не закончил.

Как обсуждалось ранее (см. часть 2), система атомов идеального газа, находящаяся в тепловом равновесии, будет подчиняться распределению Максвелла по скоростям. В 1917 году Эйнштейн заявил, что то же самое было верно для теплового равновесия его смеси из атомов и света, и принялся за поиски распределения по частотам, которое делало такую ситуацию возможной. Он использовал тот же самый подход, что и в 1909 году при изучении флуктуаций импульса света.

Вспомним, что он рассматривал «маленькое» зеркало, двигавшееся только в одном направлении, и свет, находившийся в тепловом равновесии. В его исследовании 1917 года атом из смеси играл роль маленького зеркала, и в результате получилось то же самое уравнение для флуктуаций. Отталкиваясь от этого, Эйнштейн смог показать, что закон излучения Планка является правильной формой распределения по частотам, нужной для поддержания распределения Максвелла для смеси, находящейся в тепловом равновесии. Этот результат особенно интересен тем, что Эйнштейн пришел к нему, рассматривая только взаимодействия между атомами и светом.

Другими словами, в его вычислениях столкновения между атомами сами не играли никакой роли. То есть если набор атомов идеального газа, находящегося в тепловом равновесии, достигает распределения Максвелла для скоростей сам по себе, то атомы газа из смеси Эйнштейна, находящейся в тепловом равновесии, делают это благодаря взаимодействию со светом (посредством трех процессов Эйнштейна).

Однако одно из важнейших следствий теории Эйнштейна фокусировалось на импульсе фотона. В работе Эйнштейна 1905 года, посвященной световым квантам, основное внимание уделялось энергии фотона, тогда как его импульс не имел никакого значения. В 1909 году ситуация изменилась, и Эйнштейн показал, что флуктуации импульса, связанные со светом, содержали как корпускулярную, так и волновую составляющие. Это был потрясающий результат, позволивший Эйнштейну записать выражения и для энергии, и для импульса фотона. Но в тот раз он не сделал этого, а почему, мы никогда не узнаем.

Только в работах 1916–1917 годов он завершил картину фотона, наделив его и энергией, и импульсом. Импульс играл основную роль в вышеупомянутом результате, привлекающем распределение Максвелла. Эйнштейн отмечал: «Мне кажется, все же, что самый важный результат связан с импульсом, переданным молекуле в процессе спонтанного или вынужденного излучения».

Согласно Эйнштейну, независимо от того, поглощает ли атом фотон или излучает, переданный импульс равен h ν / c , то есть энергии фотона, разделенной на скорость света [192]. При поглощении можно представить приближающийся фотон, перемещающийся в определенном направлении и «ударяющий» по атому. Именно в этом направлении импульс и передается атому.

В случае вынужденного излучения приближающийся фотон опять же «ударяет» атом, но теперь в результате атом сам излучает фотон. Как и в случае поглощения, направление переданного импульса определяется направлением движения приближающегося фотона, но в этом случае оно противоположно ему. Но при спонтанном излучении нет никакого приближающегося фотона — атом просто произвольно излучает фотон.

Так в каком же направлении передается импульс? Согласно Эйнштейну, направление определено только «случайностью». Знать его точно, как в случае двух других процессов, просто невозможно. Действительно, Эйнштейн натолкнулся на неопределенность, которая внутренне присуща тому, что впоследствии станут называть квантовой механикой. Эта работа послужила поворотным пунктом в двух отношениях. Во-первых, она раз и навсегда установила физическую реальность световых квантов. В письме к другу вскоре после публикации этой работы Эйнштейн отмечал: «Я больше не сомневаюсь в реальности излучения (световых) квантов, хотя никто не разделяет мои убеждения».

В этих убеждениях Эйнштейн был одинок до 1923 года, когда экспериментальная работа Артура Комптона (1892–1962) «очень убедительно» показала, «что квант (светового) излучения несет с собой и импульс определенного направления, и энергию».

Наконец, работа Эйнштейна 1917 года станет началом его отступления от того, что позднее станет (после введения квантов энергии) квантовой механикой. Эйнштейн высказал мнение, что случайная, или вероятностная, природа спонтанного излучения была недостатком теории, хотя он сохранял доверие к подходу, которым пользовался. Снова написав своему другу, Эйнштейн отмечал: «Я чувствую, что эту настоящую шутку, которую рассказал нам вечный творец загадок, все еще никто не понял».

Если в 1917 году Эйнштейн расценивал вероятностную природу как дефект своей теории, то позднее он был еще менее снисходительным. Он внес последний вклад в квантовую теорию (рассматриваемый многими как вообще его последний значительный вклад в науку) в 1925 году и впоследствии отвернулся от нее навсегда, аргументируя это тем, что ее вероятностная природа была ее существенным недостатком.

Глава 16

Квантовая механика

Лотерея природы

Квантовая механика официально началась с работы Планка в 1900 году. В этой революционной работе он показал, что у энергии атома или молекулы («резонатор», как он говорил) могут быть лишь дискретные значения. Другими словами, энергия поступает «порциями», называемыми квантами, подобно тому как вещество состоит из «порций», называемых атомами. Это поведение энергии заметно только на очень маленьких объектах, таких как атомы, молекулы и фотоны.

Действительно, за предметами в нашей обыденной жизни такого мы не замечаем. К примеру, двигатели наших машин не работают так, чтобы они перемещались «квантовыми скачками», как электроны в атоме. В этом отношении подобными свойствами не обладают ни объекты, с которыми мы взаимодействуем каждый день, ни люди. Тем не менее атомы, из которых состоят эти объекты, двигаются согласно очень странным законам квантовой механики.

Работа Эйнштейна 1917 года по взаимодействию света с атомами затрагивала это странное поведение, показывая, что невозможно с какой-либо долей уверенности знать направление импульса, переданного атому после спонтанного излучения фотона. Оно оставлено «на волю случая» или, точнее, закона вероятности (тогда неизвестного), описываемого квантовой механикой; квантовой механике внутренне присуща случайность.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Скотт Бембенек читать все книги автора по порядку

Скотт Бембенек - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали отзывы


Отзывы читателей о книге Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали, автор: Скотт Бембенек. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x