Сабина Хоссенфельдер - Уродливая Вселенная [Как поиски красоты заводят физиков в тупик]
- Название:Уродливая Вселенная [Как поиски красоты заводят физиков в тупик]
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-103209-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сабина Хоссенфельдер - Уродливая Вселенная [Как поиски красоты заводят физиков в тупик] краткое содержание
Книга Сабины Хоссенфельдер исследует эту проблему и ищет ответ на вопрос: что должно лежать в основе современной физики?
Автор берет интервью у коллег по научному цеху, современных выдающихся ученых, предоставив нам возможность увидеть, как устроена теоретическая физика изнутри, какие проблемы в ней назрели.
Главная идея книги – в науке нет места догмам, и настоящие ученые должны остерегаться застоявшихся научных предубеждений, мешающих прогрессу в науке.
В формате PDF A4 сохранён издательский дизайн.
Уродливая Вселенная [Как поиски красоты заводят физиков в тупик] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Кому вы рассказываете о трудностях, думаю я и киваю.
Создавая проблемы
Несмотря на успех Стандартной модели, физики ее недолюбливают. Митио Каку называет ее «уродливой, надуманной» [47] Каку М. Гиперпространство: научная одиссея через параллельные миры, дыры во времени и десятое измерение . М.: Альпина Паблишер, 2017. – Прим. перев.
, Стивен Хокинг – «уродливой и случайной», Мэтт Страсслер хулит ее как «уродливую и нелепую», Брайан Грин жалуется, что она «обладает слишком большой гибкостью», а Пол Дэвис считает, что «от нее несет душком нерешенной проблемы», ибо «тот неуверенный способ, каким она объединяет электрослабое и сильное взаимодействия» – «уродливое свойство» 58. Я все еще в поисках физика, кому Стандартная модель нравится.
Что же делает Стандартную модель такой уродливой? Худшее ее прегрешение: множество параметров – чисел, за которыми не стоит более глубокого объяснения, – и многие из них нисколечко не близки к 1. Мы уже обсуждали, какая головная боль эта масса бозона Хиггса. Но есть и еще подобные досадные числа, начиная с масс других элементарных частиц или, соответственно, отношений этих масс к массе хиггсовского бозона (ведь беспокоят нас только безразмерные величины). Такое отношение масс принимает значения вроде 0,00000408 для электрона или примерно 1,384 для истинного кварка. Никто не в силах объяснить, почему эти отношения масс таковы.
Между тем отношения масс также не кажутся и абсолютно случайными, и это заставляет физиков верить, что тому должно быть какое-то объяснение. Например, все три нейтрино очень легкие, сумма их масс более чем в 10 11раз меньше массы бозона Хиггса. Поколения фермионов имеют массы, отличающиеся, грубо говоря, в десятки раз. А есть еще странная формула Коидэ, связывающая массы электрона, мюона и тау-лептона 59. Сумма этих масс, деленная на квадрат суммы квадратных корней из этих масс, равна 2/3 вплоть до пятого знака после запятой. Почему? Похожие нумерологические соотношения были найдены и для других частиц, хотя и с меньшей степенью точности. Они вынуждают нас подозревать, что мы упускаем какое-то более глубокое объяснение.
Помимо масс есть еще так называемые матрицы смешивания. Перемещаясь из одной точки в другую, некоторые частицы могут превращаться – «осциллировать» – в другие частицы. Вероятности таких событий записываются в матрицах смешивания [48] Вообще матрицы смешивания содержат амплитуды вероятностей, а не сами вероятности. Есть одна матрица смешивания для нейтрино и одна для отрицательно заряженных кварков. Последняя известна как матрица Кабиббо – Кобаяши – Маскавы (или CKM -матрица).
. Опять-таки числа в этих матрицах пока необъяснимы, но и не выглядят совсем уж случайными. Некоторые частицы регулярно превращаются в другие, тогда как иные – не особенно, хотя могли бы. Почему это так? Мы не знаем.
Следующая проблема в том, что в Стандартной модели слишком много симметрии! Речь идет о так называемой CP -симметрии. Преобразование CP -симметрии – это комбинация изменения электрического заряда частицы на противоположный (отсюда буква C в названии, от слова charge ) и трансформации частицы в ее зеркальное отражение ( P , от слова parity , «четность»). Если произвести это преобразование, уравнения слабого ядерного взаимодействия меняются, то есть электрослабое взаимодействие этой симметрии не подчиняется. Квантовая электродинамика не может нарушать эту симметрию. Сильное взаимодействие может, однако по непонятным причинам не делает этого. Если бы сильное взаимодействие нарушало CP -симметрию, это отражалось бы, например, на распределении электрического заряда в нейтроне, а мы такого не наблюдаем.
Сила этого CP -нарушения сильным взаимодействием измеряется параметром θ . Согласно данным, собранным на настоящий момент, этот параметр оскорбительно мал, гораздо меньше 1.
Предложенный механизм для разрешения этой так называемой сильной CP -проблемы состоит в том, чтобы сделать параметр θ динамическим и позволить ему скатиться в потенциальный минимум, где он остается равным небольшому числу 60. Такое решение было бы естественным, поскольку не требует новых больших или малых чисел. Тем не менее, как независимо друг от друга заметили Стивен Вайнберг и Фрэнк Вильчек, к динамическому параметру θ должна прилагаться частица, которую Вильчек назвал «аксион» (первая и, будем надеяться, последняя частица, названная в честь стирального порошка). Аксион, однако, найден не был, так что сильная CP -проблема осталась нерешенной.
Но когда мы смотрим на Стандартную модель, нас раздражают не только числа. Еще три непонятных поколения фермионов и три калибровочных симметрии. Разве не было бы гораздо милее, если бы электрослабое и сильное взаимодействия могли быть объединены, образуя теорию Великого объединения или, еще лучше, суперсимметричную теорию Великого объединения? (Подробнее об этом в седьмой главе.)
А еще, конечно же, у нас есть претензии к согласованной космологической модели. Здесь у нас тоже полно необъяснимых чисел. Почему количество темной энергии именно такое? Почему темной материи впятеро больше, чем обычного вещества? И что же это все-таки такое – темная материя и темная энергия? В согласованной космологической модели мы лишь описываем их макроскопическое поведение, а микроскопические их свойства не играют никакой роли. Есть ли у них вообще микроскопические свойства? Сделаны ли темные энергия и материя из чего-то? И если да, то из чего? (Мы обсудим это в девятой главе.)
Далее, есть проблемы с объединением согласованной космологической модели со Стандартной моделью. Сила гравитационного притяжения между элементарными частицами чрезвычайно мала по сравнению с другими взаимодействиями. Так, например, отношение сил гравитационного и электрического притяжения между электроном и протоном равно примерно 10 –40. Еще одно необъяснимо маленькое число, иллюстрирующее «проблему иерархии».
Что еще хуже, общая теория относительности отказывается слаженно объединиться со Стандартной моделью, вот почему физики уже восемьдесят лет пытаются разработать квантованную версию гравитации – теорию «квантовой гравитации». В идеале они хотели бы также срастить квантовую гравитацию со всеми остальными взаимодействиями – создать «теорию всего». (К этому мы вернемся в восьмой главе.)
Ну и наконец, даже если бы мы разрешили все эти проблемы, то все равно продолжали бы жаловаться – обвиняя квантовую механику (это тема шестой главы).
Эти проблемы известны уже по меньшей мере двадцать лет, и ни одна из них сегодня не близка к разрешению. Частично отсутствие прогресса объясняется тем, что сложнее становится затевать (и финансировать) новые эксперименты – все простые уже проведены. Такое замедление вполне предсказуемо для зрелой области исследований.
Читать дальшеИнтервал:
Закладка: