Сабина Хоссенфельдер - Уродливая Вселенная [Как поиски красоты заводят физиков в тупик]
- Название:Уродливая Вселенная [Как поиски красоты заводят физиков в тупик]
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-103209-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сабина Хоссенфельдер - Уродливая Вселенная [Как поиски красоты заводят физиков в тупик] краткое содержание
Книга Сабины Хоссенфельдер исследует эту проблему и ищет ответ на вопрос: что должно лежать в основе современной физики?
Автор берет интервью у коллег по научному цеху, современных выдающихся ученых, предоставив нам возможность увидеть, как устроена теоретическая физика изнутри, какие проблемы в ней назрели.
Главная идея книги – в науке нет места догмам, и настоящие ученые должны остерегаться застоявшихся научных предубеждений, мешающих прогрессу в науке.
В формате PDF A4 сохранён издательский дизайн.
Уродливая Вселенная [Как поиски красоты заводят физиков в тупик] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
«Так естественность – оставляем за скобками техническое определение – означает, что нет необъяснимых параметров?» – задаю я вопрос.
«Есть вещи, просто напрашивающиеся на объяснение, – говорит Вайнберг. – Как соотношение 2:1 или разница между двумя величинами на 15 порядков. Встречая подобные вещи, вы чувствуете, что обязаны их объяснить. А естественность лишь означает, что теория располагает объяснениями подобных вещей – они не просто введены ради соответствия эксперименту».
«Тут играет роль еще и опыт?» – уточняю я.
«О да, – отвечает Вайнберг. – Есть вещи, которым вы ожидаете найти естественное объяснение, а есть те, которым не ожидаете».
Он приводит пример: «Представьте, что вы играете в покер и у вас три раза подряд роял-флеш. Вы ведь наверняка подумаете: “Так-так, этому должно быть объяснение, дилер явно пытается что-то провернуть”. Но если у вас в трех раздачах комбинации, которые большинство из нас сочли бы случайными, – король пик, две бубновые карты и прочее – и все три отличаются друг от друга, то в этом нет ничего особенного, среди них нет выигрышных, вам бы не пришло в голову искать какое-то объяснение. В этом случае нам не требуется естественного объяснения, комбинации у вас на руках ничем не выделяются, они такие же, как и любые другие. Разумеется, и роял-флеш так же вероятен или невероятен, как и любая другая комбинация, но все-таки есть что-то, требующее объяснения, в роял-флеше, если он оказывается у вас три раза подряд».
В игре Вайнберга карты – это законы природы, а точнее параметры в законах, используемые нами сегодня. Но в эту игру мы никогда прежде не играли, не могли сыграть. Мы оказались с набором карт на руках, не ведая, почему и кто их нам выдал. Мы понятия не имеем, с какой вероятностью нам мог достаться роял-флеш законов природы и есть ли в нем что-то особенное. Мы не знаем правил игры – не знаем и шансов.
«Это зависит от распределения вероятностей», – говорю я, пытаясь объяснить мою дилемму: любое подобное утверждение по поводу вероятия законов природы требует еще и другого закона – для этого самого вероятия. И с точки зрения простоты предпочтительнее будет как раз теория с заданным параметром, а не распределение вероятностей для этого параметра по мультивселенной.
«Ну, – отвечает Вайнберг, – вероятность получить двойку треф, пятерку бубен, семерку червей, восьмерку червей и червонного валета – эту конкретную комбинацию – точно такая же, как вероятность получить туза, короля, даму, валета и десятку пик. Обе комбинации имеют равные вероятности».
Пытаясь подобрать метафору для распределения вероятностей из области покера, я замечаю: «При условии, что дилер не мухлюет». Но антропоморфический пример меня беспокоит. Я не могу отделаться от ощущения, словно мы взаправду тщимся угадать правила, по которым играет Бог, дабы убедиться, что законы природы были выбраны честным образом, – в надежде, что Бог допустил ошибку и мы заслуживаем вселенной с глюино меньшей массы.
«Согласен, – отвечает Вайнберг на мое замечание, продолжая развивать метафору с покером. – Но из-за значения, которое мы придаем различным комбинациям карт, – одна выигрышная, а другая нет, поскольку таковы правила покера, – вы начинаете отмечать, когда кто-то из игроков за одним столом с вами получает роял-флеш, так же как не обращаете внимания, если соперник получает какую-то совершенно ординарную комбинацию, которая вообще-то так же маловероятна, как и роял-флеш. Все дело в том, какое значение люди приписывают роял-флешу, говоря: “Ага, вот выигрышные карты”. Тогда он и привлекает ваше внимание».
Верно, это из-за приписываемых нами же значений совпадения привлекают наше внимание, как в случае с объединением констант взаимодействий или с кусочком хлеба, выстреливающим из тостера с изображением Девы Марии. Но я никак не возьму в толк, почему такое приписывание значений пригодно при разработке теорий лучше имеющихся.
«Я использую этот пример, чтобы с вами согласиться, – говорит, к моему недоумению, Вайнберг. – Если бы вы ничего не знали о правилах игры в покер, то и не поняли бы, что было нечто особенное в роял-флеше по сравнению с любой другой комбинацией карт. Именно потому, что мы знаем правила покера, некоторые комбинации кажутся нам особенными. Дело здесь в ценности опыта».
« Но у нас ведь нет никакого опыта игры в космический покер! » – думаю я расстроенно, так и не поняв, какое отношение все это имеет к науке. Мы никак не можем знать, насколько наблюдаемые нами законы природы вероятны или невероятны, – у нас нет распределения вероятностей. Чтобы иметь возможность определить, что законы природы маловероятны, нам требуется другая теория, а откуда же эта теория возьмется? [66] Для мультивселенной это называется проблемой измерений. См., например, Vilenkin A. 2012. Global structure of the multiverse and the measure problem . AIP Conf. Proc. 1514: 7. arXiv:1301.0121 [hep-th].
Если Вайнберг, которого я считаю величайшим физиком современности, не может сказать мне этого, тогда кто сможет? И я снова спрашиваю: «И что же мы знаем о распределении вероятностей для этих параметров?»
«Ну, тут нужна теория, чтобы их вычислить».
Вот именно.
Чтобы вычислить вероятности в мультивселенной, нам нужно принять в расчет, что в нашей Вселенной существует жизнь. Звучит банально, однако не всякий возможный закон природы создает достаточно сложные структуры, а следовательно, надлежащий закон должен удовлетворять особым требованиям – например, порождать стабильные атомы или что-то подобное атомам. Это требование известно как «антропный принцип».
Антропный принцип обыкновенно не приводит к точным выводам, но в контексте конкретной теории позволяет нам оценить, какие значения вообще могут принимать параметры теории, чтобы оставаться совместимыми с наблюдением, что жизнь существует. Это похоже на ситуацию, когда вы видите, как кто-то идет по улице со стаканчиком из «Старбакса», и заключаете, что условия в этой части города должны допускать возникновение старбаксовских стаканчиков. Вы можете сделать вывод, что ближайший «Старбакс» находится в радиусе одной мили, а может, и пяти, но, по всей видимости, на расстоянии не дальше ста миль. Не слишком точная оценка и, пожалуй, не то чтобы безумно интересная, но все-таки она говорит вам кое-что о вашем окружении.
Хотя антропный принцип может поразить вас некоей нелепостью и заведомой истинностью, он бывает полезен, чтобы исключить некоторые значения определенных параметров. Скажем, когда я вижу, что вы ежедневно приезжаете на работу на машине, я вправе заключить, что вам достаточно лет для того, чтобы иметь водительские права. Вы, конечно, еще можете упорно нарушать законы, но Вселенная-то – нет.
Читать дальшеИнтервал:
Закладка: