Грегори Гбур - Загадка падающей кошки и фундаментальная физика
- Название:Загадка падающей кошки и фундаментальная физика
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9363-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Грегори Гбур - Загадка падающей кошки и фундаментальная физика краткое содержание
В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику.
Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых.
Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.
Загадка падающей кошки и фундаментальная физика - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Примерно в это же время Сет Карло Чандлер-мл. (1846–1913), эксперт по страхованию жизни и астроном-любитель, по счастливой случайности обнаружил то самое явление, которое успешно ускользало от внимания стольких профессионалов {5} . Чандлер родился в Бостоне, штат Массачусетс, и впервые столкнулся с наукой во время обучения в последнем классе школы, когда получил работу у гарвардского математика Бенджамина Пирса. Пирс, сотрудничавший с коллегами в Обсерватории Гарвардского колледжа, поручал Чандлеру проводить математические вычисления. После окончания школы Чандлер благодаря своим навыкам и умениям получил работу в Службе береговой и геодезической съемки США, где он проводил астрономические измерения долготы и широты. После того как его непосредственный руководитель оставил геодезическую службу, Чандлер ушел в страховой бизнес, но подлинной его любовью всегда оставалась астрономия; благодаря связям в Гарварде он мог проводить измерения в Гарвардской обсерватории.
Чтобы измерить широту, Чандлер использовал визуальный зенитный телескоп, то есть телескоп, спроектированный так, чтобы всегда смотреть строго вверх, в небо; широту можно было определить, измерив относительные положения звезд. Еще во время работы в береговой геодезической службе Чандлер замечал, что правильное горизонтальное выравнивание телескопа требует больших усилий и почти вдвое увеличивает время, необходимое для измерений. Поэтому в качестве своего первого проекта в роли астронома-любителя он создал новое устройство, способное выравниваться самостоятельно, и назвал его альмукантаром. С середины 1884-го по середину 1885 г. Чандлер испытывал точность альмукантара в Обсерватории Гарварда; его измерения неожиданно показали, что существует непрерывное систематическое изменение широты Обсерватории на протяжении года. Это и были первые измерения свободной нутации. Сам Чандлер не стал рассуждать об их происхождении; он отметил только, что не смог найти источник ошибки, которой можно было бы объяснить эти наблюдения.
Вопрос этот вполне мог бы оставаться нерешенным еще много лет, если бы не замечательное совпадение: почти в тот же период, когда Чандлер делал свою работу, немецкий ученый Фридрих Кюстнер из Берлинской обсерватории также наблюдал отклонения широты. Кюстнер, как и Чандлер, пытался изучать нечто совершенно другое: в случае Кюстнера это были вариации скорости света, приходящего к Земле от далеких звезд. Позже было показано, что любые подобные усилия обречены, поскольку из специальной теории относительности Эйнштейна следует, что скорость света одинакова везде и всегда, для любого, кто не поленится ее измерить. Так что Кюстнер, что не удивительно, никаких вариаций скорости света не обнаружил и никак не смог объяснить полученные при измерениях вариации широты; дело кончилось тем, что он почти на два года отложил свою работу. Когда же, наконец, в 1888 г. дело у него дошло до публикации результатов, то подтолкнуло его к этому, вполне возможно, именно знакомство с работой Чандлера.
Чандлер, в свою очередь, увидел результаты Кюстнера и понял, что вариации широты, которые он получил при измерениях, представляют собой вполне реальный эффект. Он удвоил усилия в работе с альмукантаром и в 1891 г. опубликовал первые две статьи о чандлеровских колебаниях; в статьях он показал колебания положения точки Северного полюса примерно на 9 м с периодом 427 суток {6} .
Похоже, Чандлер открыл эти колебания там, где другие потерпели неудачу, просто потому, что не знал, что именно ищет. До него астрономы, охотившиеся за свободной нутацией, сосредотачивались на Эйлеровой оценке периода в 306 суток и не обращали внимания на любые более долгопериодические изменения, считая их сезонными колебаниями в атмосфере, которые действительно способны в принципе менять видимое положение звезд. Но Чандлер, не знакомый с результатом Эйлера, просто измерял, не имея перед собой никакой заранее поставленной цели.
Результаты Чандлера были вполне убедительными. Он не только использовал большой массив собственноручно полученных измерительных данных, но и показал, что данные Кюстнера согласуются с его собственными; мало того, он показал также, что наблюдения из Пулково в России и Вашингтона в США показывают те же колебания.
Реакция на открытие Чандлера очень напоминала ситуацию, возникшую позже вокруг фотографий Марея с кошками: сначала недоверие и недоумение, а затем стремительный интерес и принятие. Отчет о 73-м ежегодном заседании Королевского астрономического общества в феврале 1893 г. наглядно иллюстрирует эту реакцию:
Прежде астрономы колебались, признавая 427-суточный период даже перед лицом очень сильных свидетельств в его пользу в наблюдениях 1860–1880 гг., по причине сложности теоретического его обоснования. Еще Эйлер в свое время указал, что если рассматривать Землю как твердое тело, то период вращения полюса должен составить 306 суток. Профессор Ньюком, однако, указал, к счастью, что получающийся более длинный период вполне объясним, ведь твердым телом Землю можно назвать лишь с оговоркой (из-за присутствия океанов можно говорить о ее реальной вязкости или композитном характере); после этого предположения 427-суточный период мистера Чандлера был принят с готовностью и даже теплотой {7} .
Короче говоря, Эйлер считал Землю идеально твердым телом, но присутствие жидкостей на внешней части планеты — атмосферы и океанов — могло привести к существенным отступлениям от расчетов Эйлера.
Но одно дело — дать словесное объяснение новому физическому явлению, и совершенно другое — разработать количественную теорию для поддержки этого объяснения. Когда Пеано в 1894 г. познакомился с проблемой падающей кошки, он сразу же обратил внимание на ее схожесть с задачей о колебаниях Земли и начал работать над математическим аппаратом, который помог бы разрешить последнюю. В обеих задачах присутствует объект, изменяющий свою ориентацию в пространстве при отсутствии внешних сил, и обе они могут получить качественное объяснение с привлечением внутренних движений рассматриваемого объекта.
Можно усмотреть подлинную иронию в том, что Пеано на исследования вдохновила падающая кошка. Антуан Паран в 1700 г. при моделировании кошки взял в качестве основы модели сферу; в 1895 г. мы видим, что Пеано моделирует сферическую Землю как кошку. 5 мая 1895 г. в статье «Касательно сдвига полюса Земли» Пеано представил Академии наук в Турине собственную математическую теорию этого явления, не забыв при этом и кошку, которой выразил должную благодарность.
В конце прошлого года в Академии наук в Париже было доказано путем эксперимента, что некоторые животные, такие как кошки, могут при падении посредством внутренних действий изменять свою ориентацию. Возможность такого движения вполне объясняется механикой. В короткой статье, опубликованной в Rivista di Matematica (в начале января 1895 г.), я коротко рассматриваю этот вопрос. Я попытался описать циклические движения, посредством которых кошка реально выправляет свое положение в пространстве, и добавил другие примеры.
Читать дальшеИнтервал:
Закладка: