Приямвада Натараджан - Карта Вселенной [Главные идеи, которые объясняют устройство космоса]
- Название:Карта Вселенной [Главные идеи, которые объясняют устройство космоса]
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9026-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Приямвада Натараджан - Карта Вселенной [Главные идеи, которые объясняют устройство космоса] краткое содержание
Астрофизик Приямвада Натараджан находится на переднем крае исследований, она в буквальном смысле создает карты Вселенной — схемы распределения темной материи. В своей книге Натараджан рассказывает об открытиях, изменивших наши представления о Вселенной в прошедшем веке, о науке, стоящей за ними, и о пути признания радикальных научных теорий; размышляет о том, почему новые идеи о Вселенной и нашем месте в ней часто встречают в штыки даже в научном сообществе. Ведь наука, всегда меняющаяся и неполная, какой она и должна быть, — это лучший способ понять нашу чудесную, таинственную Вселенную.
Карта Вселенной [Главные идеи, которые объясняют устройство космоса] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
После того как де Ситтер проложил дорогу концепции изменяющейся во времени Вселенной, идея быстро проникла в умы, и другие ученые взялись за исследования в этом направлении. Одним из таких исследователей был советский ученый Александр Фридман, в 1922 г. начавший изучать решения уравнений поля, которые описывали Вселенную, содержавшую в себе материю и изменяющуюся с течением времени, то есть динамические модели космоса при наличии материи. Он отказался как от идей Эйнштейна, так и де Ситтера, и обнаружил ряд иных решений, включающих переменные, которые удовлетворяли уравнениям поля. В его модели Вселенная первоначально была крайне плотной, но с течением времени она расширялась и становилась все более разреженной. Эйнштейн ознакомился с работой Фридмана, но без долгих рассуждений отказался принимать ее всерьез, так как он был категорически не согласен с расчетами ученого. Отчасти по причине такого несогласия работа так и не получила широкого распространения среди читателей. Кроме того, Фридман умер всего три года спустя в возрасте 37 лет. В отсутствие сильных сторонников его идея осталась без внимания.
В действительности Эйнштейн был недоволен решениями и де Ситтера, и Фридмана, но причины недовольства слегка отличались. Решение де Ситтера он считал абсурдным, так как оно подразумевало пустую Вселенную, а решение Фридмана противоречило уверенности Эйнштейна в статичности Вселенной. В ответ Эйнштейн опубликовал несколько поспешно написанных (и ошибочных) статей, призванных выявить заблуждения обоих ученых. Но, когда были обнаружены ошибки в его собственных возражениях, он признал право на существование данных решений, хотя они его и не убедили. Таким образом, даже человек, которого многие считают эпохальным ученым, придерживался убеждений, не имеющих под собой рациональной базы, несмотря на то что в своей работе опирался на рациональное восприятие и логику. Вердикт Эйнштейна, согласно которому Вселенная должна была пребывать в статичном состоянии, оставался непоколебимым до тех пор, пока не появились неопровержимые эмпирические доказательства противного.
Теория и наблюдения в астрономии до сей поры шли параллельно, но неожиданно на сцену вышел европейский священник, который заставил их пересечься. Ничем не примечательный молодой бельгийский священник и физик Жорж Леметр установил принципиально важную взаимосвязь между приведенными выше отвлеченными теоретическими решениями и эмпирическими данными, которые наконец убедили принять выводы Хаббла. Во время своей работы в Гарвардской обсерватории в 1924–1925 гг. Леметр осознал масштабные перспективы сведения в единое целое теории и результатов наблюдений. Он присутствовал на ежегодном собрании Американского астрономического общества в Вашингтоне в 1925 г., где услышал о первом крупном открытии Хабблом существования других галактик помимо нашей собственной. Кроме того, Леметр знал об астрономе Слайфере, бывшем фермере из Индианы, и был знаком с его выводами об удаляющихся туманностях. Леметр заметил, что эти два наблюдения при их сопоставлении подразумевают расширение Вселенной. И у него случилось озарение. Постепенно обрастала деталями идея провести эмпирический тест, цель которого — получить веские доказательства, необходимые для подтверждения теоретической гипотезы о расширяющейся Вселенной. После возвращения в Левен (Бельгия) он разработал модель динамичной Вселенной наподобие работы Фридмана, хотя и не имел ни малейшего понятия о его идеях. Дальновидный Леметр, на два шага опережая всех ученых, сразу же принялся сопоставлять возможные последствия результатов Хаббла и потенциальное использование новооткрытых галактик для проверки характеристик Вселенной. Он стремился проверить, находится ли наблюдаемая нами Вселенная в согласии с ОТО. В своей статье от 1927 г. Леметр спрогнозировал, что скорость, с которой туманности от нас удаляются, пропорциональна расстоянию между нами и туманностью, и подытожил: «Скорости удаления внегалактических туманностей представляют собой космический эффект расширения Вселенной» {12} . Линейная зависимость, согласно которой скорость удаляющихся туманностей пропорциональна расстоянию до них, стала качественно новым выводом, ранее не упомянутым Фридманом. Теперь появились четкие предпосылки для теоретических решений, которые можно было бы напрямую сопоставить с астрономическими наблюдениями. Леметр не знал о расчетах Фридмана, статья которого канула в Лету. К сожалению, Леметр опубликовал свою эпохальную идею на французском языке в малоизвестном научном журнале «Вестник Научного общества Брюсселя» ( Annals of the Scientific Society of Brussels ). И хотя в 1928 г. в Кембридже он входил в круг великих умов, таких как Артур Стенли Эддингтон, сам Леметр, гигант мысли британской элиты астрофизиков, не смог привлечь к своей работе большого внимания. Теоретическая концепция динамической Вселенной появилась в научной литературе в 1928 г., но осталась незамеченной и не имела какого-либо влияния.
Теперь мы возвращаемся в 1912 г., в мир наблюдательной астрономии, на фоне которой развернутся приведенные выше теоретические свершения. Астрономы-наблюдатели гораздо раньше обнаружили указания на динамический характер Вселенной. Как было сказано выше, первым ключом к разгадке послужили измерения Слайфером скорости туманностей, которые он осуществил с помощью 24-дюймового телескопа в Обсерватории Лоуэлла в штате Аризона в 1912 г. Главным техническим прорывом в то время стало использование фотопластинок в телескопе, которые позволяли фиксировать изображения слабо видимых астрономических объектов. Уже в 1840 г. удалось успешно получить изображение небесного тела, однако понадобилось куда больше времени, чтобы этот метод достиг совершенства. Еще 50 лет потребовалось для фиксации изображения тусклых звезд и неярких туманностей, которые нельзя увидеть невооруженным глазом. К началу 1900-х гг. наблюдатели регулярно оснащали телескопы камерами и другими приборами, например спектрографами: с помощью разложения света на составляющие его длины волн они показывают химический состав наблюдаемых объектов. Исследователи наводили телескопы на конкретные объекты и собирали свет в течение длительного времени. Свет на пластинке, регистрировавшей местоположение и яркость объектов, фиксировался как негативное изображение — в виде темных пятен.
Эта революционная технология позволила астрономам фиксировать слабые удаленные объекты, используя длинную экспозицию. Изображения на пластинке означали, что у астрономов появились надежные доказательства того, что они видели. Фотопластинки позволяли исследователям анализировать наблюдения и производить измерение характеристик объектов на фотографическом кадре. При наличии материальных данных наблюдений астрономы могли изучать фотопластинки при свете дня. Фотоизображения также способствовали обмену наблюдениями. Самое важное — появилась возможность откалибровать измерение яркости объекта, сделались доступными количественные статистические исследования. В частности, теперь можно было обнаружить и подтвердить с помощью повторного наблюдения перемещение объектов. Также появилась возможность измерять и документировать количественные доказательства, взятые из объективного источника — фотопластинок, в то время как ранее приходилось полагаться на хоть и тренированные, но все же потенциально пристрастные глаза астронома. Хотя в наши дни все это и не выглядит масштабным достижением, в такой сфере, как астрономия, где нельзя осуществить управляемый лабораторный эксперимент, это был настоящий прорыв. Оборудование, которое снижало зависимость от субъективного наблюдателя и автоматически регистрировало данные, максимально приблизило космологические наблюдения к качественным экспериментальным данным.
Читать дальшеИнтервал:
Закладка: