Маркус Чаун - Гравитация. Последнее искушение Эйнштейна
- Название:Гравитация. Последнее искушение Эйнштейна
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2017
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус Чаун - Гравитация. Последнее искушение Эйнштейна краткое содержание
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.
Гравитация. Последнее искушение Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Тщетно пытаясь успокоиться, чтобы их руки не дрожали, двое учёных ещё раз навели телескоп на неизвестное небесное тело. Сомнений не было — такой объект отсутствовал на карте звёздного неба. И не без оснований, ведь это была не звезда. Звёзды на их огромных расстояниях от Земли обычно выглядят как крошечные точки, и даже приближение с помощью телескопа не даёт рассмотреть их как следует. Но этот объект выглядел не точкой, а крошечным сияющим диском.
Это была планета, неизвестная планета. Со времён появления Земли она двигалась по своей орбите вокруг Солнца на периферии нашей системы, в полной темноте, и до этого момента никто не имел о ней представления. В тот момент у неё ещё не было имени, а о её существовании знали всего два человека. Но очень скоро всё человечество будет знать её под названием Нептун.
Растяжение во все стороны
То, что Д’Арре и Галле обнаружили новую планету, кажется невероятным событием, почти чудом. Коллега из Парижа написал Галле и попросил начать поиски нового мира, дав очень чёткие инструкции на этот счёт. Заинтригованный, но не очень-то верящий в успех Галле выполнил эти указания. Всего час работы — и он уже видит в телескоп совершенно новую планету, которая находится ровно на том месте, про которое говорил Леверье. Это был триумф астрономии, триумф предсказательной науки, но самое главное — триумф Исаака Ньютона и теории, которую он разработал почти за два века до этого. [85] Одним из последних примеров этой силы предвидения, которой обладает наука, является открытие в июле 2012 года бозона Хиггса. Путешествуя по Кернгормским горам в Шотландии в 1964 году, Питер Хиггс понял, что все фундаментальные строительные блоки материи должны приобретать массу за счёт взаимодействия с некой невидимой вязкой субстанцией (называемой сегодня полем Хиггса), которая заполняет всё пространство. Кроме того, он заключил, что локальное возбуждение такого поля должно проявляться в форме новой субатомной частицы. На самом деле Хиггс был одним из пяти физиков, которые независимо друг от друга описали этот механизм, но прижилось название «механизм Хиггса». Почти через 40 лет самая большая машина в мире, стоившая десять миллиардов евро, — Большой адронный коллайдер — обнаружила бозон Хиггса. Для современных физиков это стало таким же шоком, как для современников Леверье осознание того, что природа действительно подчиняется уравнениям, которые они записывают на бумаге.
Чтобы закон всемирного тяготения можно было использовать для предсказания различных явлений, Ньютон делал некоторые допущения. Как мы уже говорили выше, при расчёте воздействия Земли на Луну он представлял себе нашу планету так, как если бы вся её масса была сконцентрирована в одной точке в её центре. На самом деле, разумеется, Земля имеет большую площадь, и из-за разницы в воздействии Луны на разные её части форма Земли изменяется, что приводит к появлению приливов. Но предположение о Земле как об одной точке — это не единственное допущение, сделанное Ньютоном. Он также предположил, что на планеты распространяется лишь притяжение Солнца. Благодаря такому допущению он смог доказать, что, если планета движется под воздействием силы, которая ослабевает с квадратом расстояния (то есть в соответствии с законом обратных квадратов), её орбита имеет форму эллипса, как и предсказал Кеплер.
Но главная характеристика гравитации состоит в её универсальности. Это означает, что даже самые крохотные клочки материи воздействуют друг на друга с помощью силы тяготения. Следовательно, планета подчиняется влиянию не только Солнца, но и остальных планет. Возьмём в качестве примера Землю. Максимальное гравитационное воздействие на неё оказывают Юпитер (самая большая планета в Солнечной системе, масса которой равна примерно 1/1000 массы Солнца) и Венера, находящаяся рядом с нашей планетой. Их влияние различается в разные временные периоды, потому что Юпитер движется по орбите вокруг Солнца медленнее Земли, а Венера — быстрее. Но когда Юпитер находится на минимальном расстоянии от нашей планеты, его сила притяжения составляет 1/16 000 силы притяжения Солнца. Когда же расстояние между Венерой и Землёй максимально сокращается, сила притяжения Венеры становится примерно в полтора раза меньше этой цифры.
Поскольку гравитационное воздействие планет Солнечной системы друг на друга значительно меньше, чем влияние Солнца, Ньютон в своих расчётах планеты не учитывал. Но, строго говоря, планета размером с Землю движется под влиянием множества других небесных тел. В результате её орбита вокруг Солнца не является идеальным эллипсом. Первый закон Кеплера верен лишь приблизительно. Гравитационные силы, воздействующие на планету, постепенно изменяют её ориентацию в космосе, и участок орбиты, максимально приближённый к Солнцу, постоянно изменяется.
Давайте представим, будто мы ничего не знаем о существовании в Солнечной системе других планет. Если мы будем долго наблюдать за орбитой Земли, мы заметим, что она немного отклоняется от формы идеального эллипса. Обдумав эту ситуацию, мы придём к выводу, что в космосе существуют и другие массивные объекты, «дёргающие» нашу планету, когда она проходит мимо них, как дети, которые дёргают мать за пальто, чтобы она не шла слишком быстро. Применив огромные компьютерные мощности и приложив массу интеллектуальных усилий (это очень сложные вычисления), мы поймём, что гравитационное воздействие на Землю оказывают ещё семь планет, каждая из которых имеет свою массу и движется по своей орбите вокруг Солнца. [86] В физике единственной точно решаемой системой, то есть системой, любой этап эволюции которой можно точно предсказать, является система двух тел. Примерами такой системы являются Земля и Луна, движущиеся под взаимным гравитационным воздействием, или протон и электрон в атоме водорода, влияющие друг на друга с помощью электромагнитной силы. Если ввести в систему третье тело, то процессы окажутся настолько запутанными, что даже лучшие математики будут способны лишь на приближённый прогноз, а не на предсказание. Например, для расчёта траектории межпланетного зонда учёные, ответственные за планирование миссии, вынуждены полагаться на грубую силу. Они суммируют воздействие всех планет на зонд для заданной точки, затем определяют, как он будет двигаться в течение минуты после такого воздействия, затем повторяют расчёты для конечной точки движения и так далее. Долговременная эволюция системы из трёх или более массивных тел под влиянием их собственной гравитации теоретически предсказуема, но на практике невозможна. Это явление называют детерминистским хаосом , и из-за него даже небольшое изменение в стартовом положении планет может привести к совершенно непредсказуемому поведению в далёком будущем. Итак, в долгосрочной перспективе Солнечная система нестабильна. Как механические часы, которые могут в любой момент взорваться, разбрасывая вокруг себя пружины и шестерёнки, так и Солнечная система способна однажды отбросить Меркурий, Марс или любое другое космическое тело в далёкий холодный космос. Вполне вероятно, что в прошлом это уже случалось.
Интервал:
Закладка: