Маркус Чаун - Гравитация. Последнее искушение Эйнштейна

Тут можно читать онлайн Маркус Чаун - Гравитация. Последнее искушение Эйнштейна - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Гравитация. Последнее искушение Эйнштейна
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2017
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Маркус Чаун - Гравитация. Последнее искушение Эйнштейна краткое содержание

Гравитация. Последнее искушение Эйнштейна - описание и краткое содержание, автор Маркус Чаун, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Разгадав тайну гравитации, мы сможем ответить на величайшие вопросы науки: что такое пространство? Что такое время? Что такое Вселенная? Откуда все это взялось?
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.

Гравитация. Последнее искушение Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)

Гравитация. Последнее искушение Эйнштейна - читать книгу онлайн бесплатно, автор Маркус Чаун
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Она закатывает глаза, берёт его за руку и тащит в сторону дома.

— Альберт, ты такой странный.

Разумеется, вся эта история — лишь плод моей фантазии. Но мне так нравится её представлять! К моменту, когда 16-летний Эйнштейн сформулировал свой важнейший вопрос, учёные считали свет волной (такой же, какую можно увидеть на поверхности пруда). Это не совсем очевидно, потому что расстояние между гребнями световой волны очень мало, меньше ширины человеческого волоса. Тем не менее волновая природа света была подтверждена в 1801 году английским физиком Томасом Юнгом в ходе оригинального эксперимента. [112] Томас Юнг, живший в Лондоне, мог часто наблюдать, как от падения дождевой капли по поверхности лужи расходятся круги, гася или усиливая друг друга. Если поместить в лужу деревянную перегородку, то участки, в которых с ней сталкиваются волны от падения капли, будут чередоваться с участками, где вода спокойна. Юнг рассудил, что если он сумеет продемонстрировать такой же эффект интерференции в отношении света, то докажет его волновую природу. Он направил источник света на экран с двумя вертикальными прорезями, и за экраном возникли световые кольца, похожие на круги на воде. В том месте, где они пересекались, Юнг установил вертикальный белый экран и тут же увидел на нём узор из светлых и тёмных полос, похожий на штрихкод в супермаркете. Так он доказал, что свет является волной. Кроме того, расстояние между полосами позволило ему рассчитать, что длина этой волны (расстояние между двумя её пиками) составляет менее 1/1000 миллиметра. Но никто до сих пор не знал, что же такое свет.

Всё изменилось в 1863 году, когда шотландский физик Джеймс Клерк Максвелл, проведя огромную теоретическую работу, свёл все электрические и магнитные явления к единому набору изящных формул. Уравнения Максвелла демонстрируют, как изменения в электрическом поле создают магнитное поле и наоборот. Описание этой связи между электричеством и магнетизмом считается третьим величайшим научным объединением после объединения небес и Земли (Ньютоном) и человека с остальным животным миром (Дарвином). [113] Дарвин Ч. Происхождение видов путём естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь. — 1859.

Анализируя свои стройные уравнения, Максвелл заметил кое-что неожиданное. Они предусматривали движение волн сквозь электрические и магнитные поля, заполняющие пустые пространства. К тому же волны двигались вперёд со скоростью света в вакууме . Вывод напрашивался сам собой, хотя и был удивительным. Свет должен представлять собой электромагнитную волну. Максвелл не только нашёл связь между электричеством и магнетизмом, но и добавил к ним свет . [114] На самом деле Майкл Фарадей предположил существование связи между электричеством и магнетизмом ещё раньше. В письме от 13 ноября 1845 года он отмечал: «Я обнаружил прямую связь между магнетизмом и светом, а также электричеством и светом. Мне кажется, что это открывает огромное и богатое поле для изучения» (The Letters of Faraday and Schoenbein, 1836–1862. — 1899. — P. 148). Помимо всего прочего, Фарадей обнаружил, что магнитное поле может изменять плоскость вибрации (поляризацию) световой волны. Это явление известно как фарадеевское вращение.

За 20 лет, прошедших с момента обнародования теории Максвелла, учёные добились потрясающих успехов. Немецкий физик Генрих Герц, действуя по указаниям своего шотландского коллеги, создал искусственные электромагнитные волны. В ноябре 1886 года он, используя искровой разряд в качестве передатчика, послал невидимые радиоволны, [115] Уравнения Максвелла предполагают существование целого спектра невидимых невооружённому глазу электромагнитных волн, и видимый свет составляет лишь небольшую их долю. Длина радиоволн примерно в 1000 раз больше, чем световых. которые индуцировали электрический ток в катушке с проволокой, стоявшей на другом конце лаборатории и действующей в качестве приёмника.

Наш мир, оплетённый сетью из миллионов невидимых разговоров, которые каждую секунду передаются по воздуху, родился именно в тот день. Американский физик XX века Ричард Фейнман говорил: «В истории человечества (если посмотреть на неё, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электродинамики». [116] Feynman R., Leighton R., Sands M. The Feynman Lectures on Physics, Volume II. — Boston: Addison-Wesley, 1989. — P. 1–11.

Но, несмотря на все научные триумфы, которые стали возможными благодаря теории Максвелла, она создавала для физиков одну серьёзную проблему. Дело в том, что она совершенно не сочеталась с законами движения, сформулированными Галилеем и Ньютоном.

Волны всегда распространяются в какой-либо среде: морские волны в воде, а звуковые — в воздухе. Гипотетическая среда, в которой движется свет, была названа эфиром. [117] Эфир должен быть достаточно плотным, чтобы вибрировать на высокой частоте световых волн, и при этом достаточно лёгким, чтобы не мешать движению планет вокруг Солнца. Нечто, что твёрже стали, но при этом легче воздуха, — неудивительно, что физикам сложно его вообразить! Из факта его существования следовал неизбежный вывод: скорость светового луча, измеряемая наблюдателем, должна зависеть от скорости его движения в эфире. Представьте себе, что вы стоите на палубе яхты. Скорость ветра, бьющего вам в лицо, будет определяться тем, идёт яхта по ветру или против него. Но в уравнениях Максвелла присутствовала некоторая странность. Они никаким образом не ссылались на среду движения света и содержали лишь одно значение скорости светового луча в вакууме. Она была неизменной, постоянной, не зависящей от условий мира, в котором она существует.

Логично было бы предположить, что в расчёты Максвелла вкралась ошибка, которую нужно было найти и исправить. В конце концов, они были всего лишь модной новинкой, в то время как ньютоновские законы движения были сформулированы двумя столетиями ранее и за всё это время никто ни разу не заметил их расхождений с реальностью. Вот тут-то на сцену и вышел Эйнштейн. Его заворожило не только само подтверждение максвелловской теории, полученное Герцем, но и его красота — свойство, которое он считал признаком истинности .

Ньютон говорил, что Платон его друг и Аристотель тоже, но главным своим другом он считает истину. Забавно, что Эйнштейн нашёл в себе силы оспорить постулаты Ньютона именно потому, что был полностью согласен с этим утверждением. Поэтому он и задал себе важнейший вопрос: каково это — поймать луч света?

Увидеть невозможное

Согласно Максвеллу, световая волна — это сложная конструкция из электрического и магнитного полей, колеблющихся под прямым углом друг к другу и к направлению движения света. Электрическое поле увеличивается, когда магнитное уменьшается, и наоборот. Распад одного поля генерирует другое, и они сменяют друг друга, создавая самоподдерживающуюся электромагнитную волну.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Маркус Чаун читать все книги автора по порядку

Маркус Чаун - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Гравитация. Последнее искушение Эйнштейна отзывы


Отзывы читателей о книге Гравитация. Последнее искушение Эйнштейна, автор: Маркус Чаун. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x