Маркус Чаун - Гравитация. Последнее искушение Эйнштейна
- Название:Гравитация. Последнее искушение Эйнштейна
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2017
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Маркус Чаун - Гравитация. Последнее искушение Эйнштейна краткое содержание
Прославленный научно-популярный автор Маркус Чаун приглашает вас в увлекательное путешествие — с того момента, как в 1666 году гравитация была признана физической силой, до открытия гравитационных волн в 2015 году. Близится тектонический сдвиг в наших представлениях о физике, и эта книга рассказывает, какие вопросы ставит перед нами феномен гравитации.
Гравитация. Последнее искушение Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Схема Турока гласит, что огненный шар, возникший на каждой бране, расширился и остыл, а из обломков сформировались галактики, которые начали разлетаться, и в конце концов материя на каждой бране оказалась столь разреженной, что они, по сути, снова стали пустыми. Вакуум в пятом измерении действует как пружина, снова прижимающая браны друг к другу. В итоге они сталкиваются, и цикл повторяется снова и снова. Наш Большой взрыв — это всего лишь одно событие из длинной череды, которая началась в прошлом и продолжится в будущем.
Модель циклической Вселенной не похожа на стандартный космологический сценарий, в котором Вселенная в первые доли секунды своего существования претерпевает невероятно резкое и яростное расширение, известное под названием «инфляция». «Если бы Вселенная начала стремительно расширяться сразу же после своего возникновения, гравитационные волны двигались бы сквозь пространство-время и весь космос был бы наполнен эхом такого расширения», — говорит Турок. Циклическая Вселенная не требует, чтобы пространство-время сотрясали жёсткие изменения, а потому не предсказывает существования таких гравитационных волн.
Существование циклической Вселенной — это довольно смелая гипотеза. Сама по себе теория струн ещё не до конца доработана. Она может оказаться как частью более глубокой теории, объясняющей истоки пространства, времени и всей Вселенной, так и полной чушью. Но специалисты по теории струн верят, что находятся на правильном пути — в первую очередь потому, что это вообще единственный возможный путь, ведь, несмотря на многочисленные усилия, никому ещё не удалось создать другую «теорию всего», объединяющую фундаментальные силы. Но у сторонников теории струн есть и ещё одно основание для оптимизма: потенциально она может объяснить парадокс существования самых загадочных объектов во Вселенной — чёрных дыр.
Чёрные дыры
Согласно теории гравитации Эйнштейна, в сердце чёрных дыр материя сжимается до бесконечной плотности, и все известные нам законы физики перестают работать. Но сингулярность — не единственное место в чёрной дыре, которое ставит под сомнение наше понимание реальности.
Как уже упоминалось выше, горизонт событий — это воображаемая мембрана, окружающая сингулярность и обозначающая точку невозврата для попадающего на неё света и материи. Когда мы говорим о размерах чёрной дыры, мы имеем в виду диаметр горизонта событий.
В 1974 году Стивен Хокинг шокировал научный мир заявлением, что чёрные дыры на самом деле не чёрные. К этому выводу он пришёл, проанализировав квантовые процессы поблизости от чёрной дыры. Давайте вспомним, что в соответствии с принципом неопределённости Гейзенберга вакуум порождает пары частиц и античастиц. Эти виртуальные частицы живут крайне недолго, аннигилируя и исчезая всего за доли секунды. Но Хокинг понял, что вблизи горизонта событий чёрной дыры должно происходить и происходит нечто совершенно иное.
Одна половина пары «частица–античастица» может начать двигаться прочь от чёрной дыры, пытаясь избежать её притяжения, а вторая — упасть в неё через горизонт событий. После этого она уже не вырвется наружу, чтобы столкнуться со своей парой и аннигилировать. Частица, которой удалось сбежать, из виртуальной превратится в реальную с куда более долгим сроком жизни.
Хокинг понял, что подобные процессы постоянно происходят вокруг горизонта чёрной дыры. Из-за того что одиночные частицы постоянно рвутся прочь от неё, возникает излучение Хокинга.
Определяющей характеристикой чёрной дыры является тот факт, что ничто попавшее в неё не может вырваться наружу. Излучение Хокинга испускает не сама дыра, так как его частицы в неё не попадают. Оно рождается в вакууме на границе горизонта событий.
Но энергия, которая создаёт излучение Хокинга, должна откуда-то браться, и единственным её источником может быть гравитация самой чёрной дыры. Частицы постоянно утекают в открытый космос, и гравитационное поле чёрной дыры ослабевает, заставляя её постепенно уменьшаться, или «испаряться».
Чем меньше чёрная дыра, тем сильнее её излучение Хокинга. [266] Радиус горизонта чёрной дыры резко увеличивается с ростом её массы. Если масса одной чёрной дыры в два раза больше, чем другой, то и её горизонт будет иметь в два раза больший радиус. Но так как сила гравитации ослабевает в соответствии с законом обратных квадратов, чёрная дыра, в два раза превышающая другую чёрную дыру по массе, будет иметь в два раза меньшую силу притяжения, а степень изменения силы притяжения такой дыры (приливная сила) окажется в четыре раза меньше. Поскольку именно приливная сила ответственна за разрыв пар «частица–античастица» и возникновение излучения Хокинга, оно оказывается сравнительно слабым для крупных чёрных дыр и сильным — для небольших.
Для чёрных дыр, имеющих звёздную массу, и сверхмассивных чёрных дыр, находящихся в центре большинства галактик, эта утечка частиц настолько минимальна, что предполагаемый срок жизни дыр превышает текущий возраст Вселенной. Но по мере того, как чёрная дыра уменьшается, её излучение Хокинга становится всё сильнее и сильнее. У крошечной чёрной дыры (а этой стадии достигнет каждая дыра, прежде чем исчезнуть окончательно) оно будет ослепительно-ярким. Что и говорить, чёрные дыры умирают с блеском.
По определению всё то, что светится, имеет температуру. Это верно и для чёрных дыр, сверкающих излучением Хокинга. С первого взгляда это предположение кажется безумным, потому что чёрная дыра — это не что иное, как бездонный колодец в пространстве-времени, не содержащий никакого источника тепла. Но она разогревается не из-за каких-то своих внутренних свойств, а из-за внешних квантовых процессов, протекающих в окружающем её вакууме.
Тот факт, что излучение Хокинга заставляет чёрную дыру испаряться и в итоге приводит к её исчезновению, создаёт значительный научный парадокс. Фундаментальный закон физики гласит, что информацию нельзя создать или уничтожить. Возьмём, к примеру, Луну. Используя законы Ньютона, мы можем предсказать её завтрашнее положение на небе, исходя из сегодняшнего. Значит, информация о её будущем местоположении заключена в информации о настоящем. Пока Луна движется по небосводу, мы не приобретаем и не теряем информацию — она остаётся в сохранённом виде. С другой стороны, при «испарении» чёрной дыры информация утрачивается.
Чёрная дыра звёздной массы когда-то была звездой. Для того чтобы точно определить параметры такого небесного тела, требуется большой объём информации, например, о типе, местоположении и скорости каждого её атома. Но когда чёрная дыра полностью «испаряется» из-за излучения Хокинга, от неё ничего не остаётся. Куда же исчезает информация? Вот так вкратце формулируется информационный парадокс чёрных дыр.
Читать дальшеИнтервал:
Закладка: