Ари Штернфельд - Парадоксы ракеты. Еще о парадоксах ракеты

Тут можно читать онлайн Ари Штернфельд - Парадоксы ракеты. Еще о парадоксах ракеты - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Парадоксы ракеты. Еще о парадоксах ракеты
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ари Штернфельд - Парадоксы ракеты. Еще о парадоксах ракеты краткое содержание

Парадоксы ракеты. Еще о парадоксах ракеты - описание и краткое содержание, автор Ари Штернфельд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Ари Абрамович Штернфельд, некогда известный популяризатор космонавтики, написал в конце 1930-х годов две статьи, которые могут удивить и сегодня.
«Техника — молодежи», 1940, №№ 1, 12.

Парадоксы ракеты. Еще о парадоксах ракеты - читать онлайн бесплатно полную версию (весь текст целиком)

Парадоксы ракеты. Еще о парадоксах ракеты - читать книгу онлайн бесплатно, автор Ари Штернфельд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Некоторые читатели выражают недоумение по поводу парадокса массы ракеты и массы топлива. Автор привел случай, когда тяжелая ракета может взлететь выше легкой и когда расходование топлива становится менее выгодным, чем сохранение его в качестве дополнительной массы, накопившей энергию и живую силу во время полета. Этот частный случай некоторые читатели приняли за общий закон и сделали совершенно неправильный вывод, будто всякая тяжелая ракета всегда взлетит выше, чем легкая.

Однако автор статьи «Парадоксы ракеты» такого закона не предлагал, а только разобрал особые случаи и особые условия, при которых полет ракеты может совершаться в кажущемся противоречии с установленными законами физики. Эти отступления возможны только для тех ракет, при конструировании которых не учтены все особенности ракетного двигателя. При всех расчетах и выводах, приводимых в статье, автор оперирует именно с такими ракетами. Само собой разумеется, что с правильно рассчитанными и построенными ракетами ничего парадоксального не случится.

Парадокс направления вызвал еще более оживленный обмен мнениями. В редакцию поступило много писем, опровергающих положения автора. Ученики 91-й школы г. Москвы пишут: «Когда мы проверяли автора, делая вычисления скоростей ракеты, свободно падающей вниз и пущенной с высоты 4 километров вертикально вверх, у нас получался результат, целиком совпадающий с выводами автора. Но если мы складывали не скорости, а энергии, то получали совсем другой результат: обе ракеты должны взлететь на одинаковую высоту».

Это письмо школьников правильно вскрывает тот момент, который позволит нам объяснить все кажущиеся противоречия здравому смыслу. В парадоксе направления говорится о том, что ракета, запущенная с высоты 4 километров вертикально вверх, взлетит на меньшую высоту, чем такая же ракета и с таким же запасом топлива, но предварительно сброшенная в четырехкилометровую пропасть. Подчеркиваем, что непременным условием парадокса ставится: 1) поворот ракеты в противоположную сторону с сохранением живой силы, накопленной ракетой во время ее падения в пропасть, и 2) отсутствие сопротивления воздуха.

В классической механике существует закон, согласно которому работа сил любого поля, в том числе и поля земного тяготения, не может увеличить кинетическую энергию тела, перемещаемого силами поля в границах эквипотенциальной поверхности. В применении к нашему случаю это значит, что ракета при падении с четырехкилометровой высоты хотя и приобретает некоторую энергию, но весь этот запас она израсходует для того, чтоб вернуться на прежний уровень. А из этого следует совершенно бесспорное положение, что сила земного тяготения не может увеличить энергию нашей ракеты.

Все сказанное совершенно правильно, но лишь в случае выключенного двигателя. Правильны также и все положения статьи. Pакета, брошенная предварительно вниз, взлетит на 12 километров выше, чем ракета, запущенная вертикально вверх. Кажущееся противоречие с законами физики существует только для тех, кто не учитывает особенностей ракетного двигателя. Вспомним эти особенности.

Как известно, движение ракеты происходит вследствие того, что некоторая масса газов (продуктов сгорания топлива) с большой скоростью вылетает из сопла ракетного снаряда. Но ракета и газы составляют общую систему из двух тел. В этом случае, согласно закону Ньютона, ракета получает импульс (толчок) в противоположную истечению газов сторону. Она начнет удаляться от общего для обоих тел центра тяжести. Спустя одну секунду скорость движения ракеты будет во столько раз меньше скорости вылетевших газов, во сколько раз ее масса больше их массы. Так объясняет механика полет ракеты. Теперь рассмотрим энергетическую сторону движения ракеты. Горючее, находящееся на борту ракеты, хранит в себе некоторый запас термохимической энергии. При сгорании топлива эта энергия освобождается и сообщает ракете поступательное движение. Одинаковые количества определенного топлива всегда имеют и одинаковые запасы термохимической энергии. Поэтому многие товарищи, приславшие свои письма в редакцию, рассуждали так: раз запасы энергии в обеих ракетах одинаковы и раз эта энергия целиком расходуется на движение снаряда, то мы ни в коем случае не можем получить никакого выигрыша ни в скорости, ни в потолке ракеты. Вот тут-то и скрывается источник всех недоразумений. На самом деле далеко не вся энергия топлива расходуется на движение ракеты, большое количество ее пропадает зря.

Для того чтобы ракета начала движение вперед, частицы газов должны вылетать из ее сопла назад. За счет чего же эти частицы приобретают свою скорость? За счет термохимической энергии топлива. Таким образом, эта энергия делится на две части. Одна часть ее идет на то, чтобы сообщить движение газам, а другая сообщает поступательное движение ракете. И чем больше энергии пойдет на движение ракеты, тем больше будет коэффициент полезного действия ракетногo двигателя. Наоборот, чем больше энергии будет затрачено на движение газов, тем меньше будет полезная работа двигателя. Нетрудно догадаться, что наибольший коэффициент полезного действия мы получим в том случае, если вылетающие газы не будут иметь никакой скорости, то есть не будут уносить с собой никакой энергии.

Но возможно ли это? Здесь как будто явное противоречие. Ведь для быстрого движения ракеты надо, чтобы газы вылетали из ее сопла с большой скоростью, а для того, чтобы коэффициент полезного действия ее был возможно выше, нужно, чтобы эти газы имели наименьшую скорость. Однако противоречие здесь только кажущееся. На самом деле такое условие можно легко соблюсти. Пусть скорость истечения газов равна 700 м/сек , как это было принято в статье. Если ракетный двигатель начинает работу в тот момент, когда снаряд стоит неподвижно, то вылетающие из сопла газы уносят с собой наибольшее количество энергии. Наблюдатель, стоящий вблизи ракеты, увидит, как эти газы будут проноситься мимо него с колоссальной скоростью. И пока ракета не достигнет большой скорости, ее коэфициент полезного действия будет очень мал.

Теперь представим себе, что двигатели начали свою работу в тот момент, когда скорость ракеты достигла 700 м/сек . Таким образом, вся система ракета — газ несется вперед с этой скоростью. Газы удаляются от ракеты назад со скоростью 700 м/сек . Но вместе со всей системой они летят вперед с той же скоростью. Фактически газы останутся неподвижными, а ракета будет сначала отлетать от них вперед со скоростью 700 м/сек . А раз по отношению к окружающему пространству частицы газа станут неподвижными, то они не будут уносить с собой никакой энергии. А это, в свою очередь, означает, что вся термохимическая энергия топлива почти нацело превратится в кинетическую энергию движения ракеты. И пока скорость ракеты не достигнет 1000–1100 м/сек , ее коэффициент полезного действия будет близок к единице, то есть максимально высок.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ари Штернфельд читать все книги автора по порядку

Ари Штернфельд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Парадоксы ракеты. Еще о парадоксах ракеты отзывы


Отзывы читателей о книге Парадоксы ракеты. Еще о парадоксах ракеты, автор: Ари Штернфельд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x