Вера Черногорова - Беседы об атомном ядре
- Название:Беседы об атомном ядре
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1976
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вера Черногорова - Беседы об атомном ядре краткое содержание
Беседы об атомном ядре - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Пятнадцать лет бились ученые над решением проблемы этой феноменальной, упорной неконтактабельности одинаковых атомных ядер. Бились до тех пор, пока не была вскрыта — именно вскрыта, а не устранена — причина этого непонятного поведения ядер.
И возбужденное ядро, и возбужденный атом — это, в сущности, одноволновые передатчики. Квант света фиксированной частоты, излучаемый атомом химического элемента, может быть принят только единственным квантовым приемником — атомом того же элемента. Ядерный гамма-квант, которому тоже соответствует длина волны определенной частоты, может возбудить такое же стабильное ядро-приемник.
У атомных и ядерных приемников и передатчиков нет ручек для изменения настройки. Для атомов она и не требовалась: фотонная связь между ними работала отлично. Ядерный же приемник ядерные гамма-кванты не принимал и молчал.
В обычной радиоаппаратуре настройка может испортиться из-за какой-нибудь перегоревшей детали. Но что может перегореть в ядре?
Законы квантовой механики, в частности принцип неопределенности В. Гейзенберга, устанавливают интервал энергий, в пределах которого должен наблюдаться резонанс и в атоме, и в ядре. Этот интервал, называемый шириной резонансной линии, обратно пропорционален времени жизни ядра в возбужденном состоянии. Например, для ядер железа-57, которые удерживают избыток энергии примерно 10 –7секунды, ширина линии равна 10 –8электрон-вольта.
У изомерных ядер время жизни и интервал энергии излучаемых фотонов, в котором мог наступить резонанс, были почти такими же, что и у атомов. А установить гамма-связь между ядрами так и не удавалось.
Наконец в 1945 году молодые советские ученые И. Барит и М. Подгорецкий впервые открыли всем глаза на обстоятельство, которое до тех пор упускалось из виду. Закон сохранения энергии мог гарантировать успех ядерной связи на гамма-квантах, но он мог также и жестоко карать физиков за оплошность, допущенную по отношению к нему. А оплошность была достаточно серьезной. В своих подсчетах ученые почему-то не учитывали ту небольшую энергию, которую получало ядро в момент отдачи при вылете из него гамма-кванта.
Эта сложнейшая система из элементарных частиц, связанных воедино уникальными ядерными силами, стреляя гамма-квантом, претендовала на свою долю энергии отдачи, как обычный макрообъект.
Энергия взрыва пороха делится между пулей и винтовкой в точном соответствии с их массами: большую часть получает легкая пуля, но кое-что достается и винтовке. Излишек ядерной энергии точно таким же образом распределяется между ядром и гамма-квантом: почти вся энергия достается фотону, а ядру перепадает ничтожнейшая ее доля.

Про отдачу ядра не то чтобы забыли, просто не придавали ей никакого значения. Всех успокаивал качественный вывод о том, что энергия гамма-кванта сохраняется практически нетронутой. Энергия отдачи никогда не фигурировала и в атомном резонансе, там ее величина, приблизительно равная 10 –10электрон-вольта, была намного меньше ширины резонансной линии и не могла расстроить фотонную связь.
Но между атомными и ядерными передатчиками была одна колоссальная разница: они работали в разных энергетических диапазонах. Атомы испускали энергию порядка нескольких электрон-вольт, а ядра — миллионы электрон-вольт. Ясно, что и при дележе энергии между каждым из этих микрообъектов и соответствующими квантами электромагнитного излучения ядру доставался неизмеримо больший пай, чем атому.
В ядерном гамма-резонансе одна десятимиллионная доля энергии, которую забирало себе, например, то же ядро железа-57, равна примерно 10 –3электрон-вольта. Порция сама по себе ничтожно малая, и все-таки она в 10 5раз больше всего интервала резонансной энергии.
Отдача ядра, которую физики раньше сбрасывали со счетов, едва заметным образом меняя энергию гамма-квантов, в то же время полностью лишала их способности поддерживать резонансную гамма-связь с другими ядрами. Какая уж тут коммуникабельность! Искать в таких условиях ядерный гамма-резонанс — это все равно что пытаться принять, например, в Москве радиостанцию Сиднея при сильнейшем фединге.
Но в особых условиях ученым все-таки удалось наладить гамма-связь между ядрами. Ядро, испытывающее отдачу, и вылетающий из него гамма-квант с меньшей энергией, или, что то же самое, с меньшей частотой, движутся в противоположные стороны. Перед нами давно известный физикам эффект Допплера.
Со звуковым вариантом этого эффекта, наверное, знаком каждый. Свисток тепловоза, удаляющегося от перрона вокзала, слышится нам более низкой частоты, чем тот же свисток прибывающего. Частота колебаний волн, распространяющихся в сторону, противоположную движению источника звука, уменьшается.
К счастью, с допплер-эффектом можно бороться. Если источник, содержащий возбужденные изомерные ядра, двигать в сторону мишени, то можно скомпенсировать изменение частоты попадающих в нее гамма-квантов.
Правда, подсчитав, с какой скоростью надо двигать излучатель, физики махнули было рукой на все свои надежды по использованию ядерного гамма-резонанса. Оказалось, отдачу можно было компенсировать, двигая ядра… со скоростью звука.
Несмотря на столь жесткие условия, экспериментаторам удалось зарегистрировать резонанс в тот момент, когда мимо покоящейся ртутной мишени и счетчика на плече ультрацентрифуги проносились возбужденные ядра ртути. Нельзя сказать, что это был очень удобный метод исследования гамма-резонанса.
Впрочем, тот, кто не выносил воя центрифуги, мог выбрать другой вариант: например, нагревать ядра-излучатели до температуры в несколько тысяч градусов. В этом адском пекле ядра тоже приобретали скорость, необходимую для компенсации отдачи. Но далеко не каждая лаборатория могла воздвигнуть собственную домну для подобного эксперимента.
И вдруг все переменилось к лучшему. Выброшены были центрифуги и потушен был наконец почти солнечный огонь, который бушевал в лабораториях.
Немецкий физик Р. Мессбауэр в 1958 году показал, как легко и просто наблюдать гамма-резонанс, если предварительно принять некоторые меры по ликвидации отдачи ядра. Молодой ученый стал единственным человеком в мире, который употреблял длинное название «ядерный гамма-резонанс без отдачи» вместо принятого всеми короткого термина, обозначающего это явление, — «эффект Мессбауэра».
Научный сотрудник Гейдельбергского института имени М. Планка Р. Мессбауэр для работы над диссертацией получил от своего шефа тему, которая называлась «Исследование резонансного поглощения гамма-квантов». Планировалось традиционное изучение свойств этого явления с помощью сильного нагревания ядер передатчиков и приемников. Но диссертант пошел своим, оригинальным путем к решению поставленной перед ним задачи. Он сообразил, как, обойдясь без нагревания, можно почти полностью избавиться от отдачи ядра. Р. Мессбауэр проверил свою идею на опыте и описал ее в диссертации на соискание ученой степени доктора философии. К моменту опубликования диссертации автору было 29 лет, а через три года ом получил в Стокгольме Нобелевскую премию по физике.
Читать дальшеИнтервал:
Закладка: