Вера Черногорова - Беседы об атомном ядре
- Название:Беседы об атомном ядре
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1976
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вера Черногорова - Беседы об атомном ядре краткое содержание
Беседы об атомном ядре - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Р. Мессбауэр не был ни магом, ни волшебником и не мог отменить законы природы. Ученый понял, как повлиять на распределение энергии между гамма-квантом и ядром в пользу гамма-кванта.
Все знают, что если винтовку опереть о стенку, то отдача при выстреле будет незначительной. Масса винтовки за счет массы стены увеличится настолько, что пуле достанется почти вся энергия, выделяющаяся при взрыве пороха.
«Конечно, — сказал Р. Мессбауэр в лекции, прочитанной несколько лет назад в Москве, — приковать ядра к стене не так-то просто. Однако можно попытаться сделать это, взяв вместо одного атома в газообразной фазе набор атомов в виде кристаллов».
Химические силы надежно приковали атомы, содержащие возбужденные ядра-изомеры, к кристаллической решетке, которая играла роль стены и практически сводила на нет отдачу ядра при испускании гамма-квантов.
Эффект Мессбауэра очень скоро нашел широкое применение. С его помощью можно было измерять невероятно малые изменения энергии гамма-квантов. Чувствительность этого метода намного превосходила все достигнутое к настоящему времени в любых областях физики.
— Все это очень интересно, но какое отношение имеет эффект Мессбауэра к вопросу об использовании ядер-изомеров?
— Самое прямое. Без открытия этого эффекта нельзя было и мечтать о создании ядерного лазера.
— Лазера? Неужели можно управлять возбужденными ядрами?
— Физики надеются получить пучок ядерных фотонов с помощью гамма-резонанса без отдачи.
Французский ученый А. Пуанкаре писал, что «всякой истине суждено одно мгновение торжества между бесконечностью, когда ее считают неверной, и бесконечностью, когда ее считают тривиальной». Но теории, созданные одним из крупнейших ученых XX века А. Эйнштейном, как-то выпадают из того длинного ряда гипотез, довольно быстро переживших свое мгновение торжества.
Интересный результат, полученный А. Эйнштейном в то время, когда он занимался проблемой излучения и поглощения фотонов, лишь 60 лет спустя был реализован в одном из самых замечательных приборов наших дней — в лазере.
Возбужденные атомы обычно испускают кванты света столь же несогласованно, как несогласованно звучат инструменты, настраиваемые музыкантами перед концертом. Но когда маэстро взмахивает палочкой, рождается мелодия, возникающая в результате упорядоченного звучания всего оркестра.

Оркестром возбужденных атомов, как предсказывала теория, можно управлять с помощью электромагнитного излучения той же частоты, что и свет, который испускают возвращающиеся в нормальное состояние атомы. Множество заранее подготовленных возбужденных атомов, подчиняясь приказу о немедленном возвращении в основное состояние, все разом отдают свой избыток энергии.
Замечательный английский физик М. Фарадей, размышляя о драгоценных камнях — рубинах и бриллиантах, писал: «Ни один из этих драгоценных камней не может соперничать по своей яркости и красоте с очарованием пламени». Луч красного цвета из рубинового лазера не уступает по красоте и очарованию пламени, а по «качеству» света оставляет его далеко позади. Все атомы лазера работают самосогласованно, как один.
Если б можно было наблюдать за каждым из лазерных атомов, мы бы увидели, что их колебания синхронизованы по фазе. Поэтому излучение всех атомов сливается как бы в единую волну. Такой свет называется когерентным.
В самом начале нашего века о ядрах еще ничего не было известно, и А. Эйнштейн в своих рассуждениях имел в виду только атомы. Но выводы его теории целиком и полностью применимы к излучению и поглощению ядерных гамма-квантов. То есть фотонов с энергией, в миллионы раз большей.
В гамма-лазере, или газере, как сокращенно называют его физики, должны работать возбужденные заранее атомные ядра, выдавая управляемое электромагнитное излучение точно такого же высшего качества, как и в оптическом лазере.
Чудесный лазерный свет произвел переворот уже во многих отраслях науки и техники. Еще большую революцию, например в биологии, произведет когерентное электромагнитное излучение газера с длиной волны, меньшей размера атома. Чтобы проникнуть в тайны живого, ученым необходимо иметь возможность рассмотреть детали строения молекул белков, генов. С помощью лазерных гамма-квантов можно будет изучать в живых тканях даже движение отдельных макромолекул.
Синхронное излучение возбужденных ядер позволит получить не только объемную картину молекулы ДНК в клетке, но и снять объемный кинофильм о процессе удвоения ДНК, о синтезе белков в рибосомах. Газер может дать очень короткий импульс излучения до 10 –15секунды. Поэтому при освещении газерным светом в каждом кадре этого уникального фильма можно будет увидеть «замороженные» во времени тепловые колебания молекул. Почему же до сих пор не создан ядерный гамма-лазер?
Создание газера — дело необычайной сложности. Оно потребует участия в нем многих лабораторий и институтов, предельных усилий ума и использования новейших достижений техники.
Говорят, что прибор, эксперимент и физическая проблема, которую он решает, — хлеб, любовь и фантазия физика-экспериментатора. И если фантазируют чаще всего теоретики, а их претензии к любви все возрастают, то хлеб навсегда и безвозмездно принадлежит экспериментаторам. Сейчас ученые широко обсуждают главную проблему, которую необходимо решить, прежде чем приступать непосредственно к сборке сложнейшей установки. Пока нет четкого мнения о том, как собрать в рабочем веществе газера достаточно большое количество возбужденных атомных ядер.
В рубиновом лазере атомы хрома легко возбуждаются светом от мощной разрядной электронной лампы, но атомные ядра светом не возбудить. Для этого необходимы ядерные реакции.
Советский физик Л. Ривлин в 1961 году впервые предложил схему создания ядерного лазера на мессбауэровском излучении без отдачи. Кристалл более чем наполовину обогащается долгоживущими возбужденными ядрами — изомерами. И достаточно хоть одному «разрядиться», как его гамма-квант послужит сигналом для всех остальных ядер, и газерный оркестр заработает. Но увы… Вместо чарующей мелодии мы бы услышали какофонию звуков, какую мог бы издавать небезызвестный квартет из басни И. Крылова.
На возбуждение ядер нейтронами, на выделение их из мишени и кристаллизацию требуется минимум несколько дней. Изомеры с таким временем жизни существуют, но ширина резонансной линии у них настолько мала, что становятся заметными ее искажения, связанные с дефектами кристаллической решетки. Эти искажения, неодинаковые у разных ядер, грубо нарушают ядерный гамма-резонанс.
Читать дальшеИнтервал:
Закладка: