Вера Черногорова - Беседы об атомном ядре
- Название:Беседы об атомном ядре
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1976
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вера Черногорова - Беседы об атомном ядре краткое содержание
Беседы об атомном ядре - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Конечно, это предположение, но оно достаточно обоснованно и вполне может осуществиться, если человечество не примет соответствующих мер.
Одна из них — широкое использование фундаментального открытия физиков: цепной реакции деления ядер урана.
Решительный шаг в этом направлении был сделал в Советской стране, где были разработаны основы мирной ядерной энергетики. Первая в мире атомная электростанция в Обнинске открыла новую эру в энерготехнике. Сейчас ядерная энергетика развивается такими темпами, что, по-видимому, к концу нашего века более 30 процентов всей добываемой в мире электроэнергии будут давать атомные электростанции. Надолго ли хватит ядерного горючего?
Этот вполне резонный вопрос давно волнует и ученых, непосредственно решающих проблемы ядерной энергетики, и тех, кто занимается фундаментальными исследованиями. Несмотря на большие запасы в природе делящихся элементов, в ядерных реакторах используется лишь незначительная их часть. Связано это с особенностью ядерной реакции деления изотопа урана-235. Только его ядра делятся нейтронами, которые получили название «тепловых», то есть замедленных до тепловых скоростей окружающих молекул.
Изотоп урана-238 для реакции деления требует нейтроны с энергией около одного миллиона электрон-вольт. В реакторе, где в качестве горючего применяется только уран-238, нейтроны, испускаемые делящимися ядрами, тормозятся в веществе до нескольких тысяч электрон-вольт и теряют способность вызвать реакцию деления других ядер урана-238, и цепная реакция глохнет очень быстро.
Итак, необходимого для ядерной энергетики изотопа урана-235 очень мало в природе, его едва хватит до начала следующего века, а урана-238, наоборот, сколько угодно, но он в реакторе не делится. Глубокое изучение свойств атомных ядер помогло найти несколько принципиальных решений проблемы ядерного горючего. Поглощая нейтроны, ядра урана-238 после нескольких радиоактивных распадов превращаются в ядро изотопа плутония-239, который обладает теми же делящимися свойствами, что и уран-235. Но где взять столько нейтронов, чтобы наработать необходимое количество ядерного топлива?
Прежде всего не стоит терять те нейтроны, что рождаются в реакторе при делении ядер урана-235. Уже созданы первые установки, так называемые реакторы на быстрых нейтронах, которые выполняют сразу две функции: вырабатывают энергию и превращают «негорючий» уран-238 в полноценное ядерное топливо. Благодаря особой конструкции этих реакторов та часть нейтронов, возникающих в момент деления ядер урана-235, которая не принимает участия в цепных реакциях, улавливается ураном-238.
Но проблема в целом еще не решена. Потребуется немало усилий ученых и конструкторов, чтобы скорость выработки ядерного горючего соответствовала бы скорости развития энергетики.
Со своей стороны физики, занятые исследованиями фундаментальных свойств атомных ядер, предлагают новые способы получения «горючих» ядерных материалов. Один из них — электроядерный. Он предполагает соединение ускорителя протонов с ядерным реактором в единую систему. В ней уран-238 превращается в плутоний-239, который при делении в реакторе и отдает энергию.
В последнее время ученые рассматривают еще одну принципиальную возможность переделки урана-238 в изотоп, пригодный для ядерной энергетики, с помощью… ускорителя нейтронов.
Способа ускорения нейтральных частиц как будто не существует. Все современные синхрофазотроны, циклотроны, синхроциклотроны ускоряют заряженные, и только заряженные, частицы. И в самом маленьком и в самом большом из этих устройств частицы подхлестываются электрическим полем. А чем можно подтолкнуть нейтрон?
Идею ускорения нейтронов предложил в 1959 году советский ученый Ю. Петров. Конечно, эту гипотезу нельзя проверить ни на одном из известных типов ускорительных устройств. Дополнительные порции энергии нейтрон должен получать от… ядер, находящихся в возбужденном состоянии, то есть имеющих избыточную энергию.
Представим себе, что удалось создать особую среду, значительная доля ядер которой находится не в основном состоянии, а в изомерном. Эта среда напоминает рабочее тело гамма-лазера, насыщенное ядрами-изомерами (об этом мы говорили в предыдущей главе). Нейтрон, сталкиваясь с ядром, как бы спускает взведенный ядерный курок. Система связанных нуклонов переходит в основное состояние, а нейтрон забирает ее избыточную энергию.
В этом необычном ускорителе нейтроны, набирающие энергию при хаотических соударениях с возбужденными ядрами, напоминают пчел, суетящихся около цветов в поисках нектара. Далеко не каждый цветок оказывается со сладкой капелькой, и далеко не каждая встреча ядра с нейтроном приводит к возрастанию энергии нейтрона. Ядро может оказаться невозбужденным.
В этом случае нейтрон не только не увеличивает свою энергию, но может потерять накопленную раньше, если масса ядра ненамного превосходит его собственную массу. Изомерное ядро, сбрасывая избыток энергии при столкновении с нейтроном, испытывает отдачу. Более массивные изомерные ядра в нейтронном ускорителе предпочтительнее, поскольку они тратят на отдачу гораздо меньше энергии, чем легкие.
В ускорителе нейтронов не должно быть изомерных ядер, имеющих запасные уровни возбуждения при энергии, равной той, до которой желательно разогнать нейтроны. Иначе вместо ускорения нейтроны сами начнут «накачивать» ядра энергией, переводя их в возбужденные состояния.
Предварительные теоретические оценки показывают, что подходящая изомерная среда может стать ускорителем нейтронов до энергии в один или два миллиона электрон-вольт.
В установке, содержащей уран-238, перемешанный с изомерными ядрами, по-видимому, может возникнуть самоподдерживающаяся реакция деления.
В самом деле, возбужденные ядра, отдавая свою энергию нейтронам, поддерживали бы их в отличной «спортивной» форме, и они постоянно были бы в состоянии преодолеть высокий энергетический барьер деления ядер урана-238.
Ученые пока обсуждают только принципиальные вопросы, связанные с созданием подобного изомерного реактора. Но неожиданная радикальная идея может сразу продвинуть вперед решение этой проблемы. Не так давно группа советских ученых выдвинула предложение, как с помощью светового пучка лазера сжимать делящееся вещество, повышая его плотность в сотни раз. Естественно, что в случае успеха это сразу снизило бы необходимое критическое количество вещества, при котором возникает цепная ядерная реакция деления. Эта идея, возможно, приблизит момент проверки гипотезы об изомерном реакторе. Она поможет обойти главную трудность для его практической реализации — заготовку огромного количества изомерных ядер.
Читать дальшеИнтервал:
Закладка: