Ричард Фейнман - Том 3. Квантовая механика
- Название:Том 3. Квантовая механика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 3. Квантовая механика краткое содержание
Том 3. Квантовая механика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но раз между двумя сторонами перехода имеется разность потенциалов, то это напоминает батарейку. Если соединить n -область с p -областью проволочкой, может по ней пойдет ток? Это будет замечательно, ведь тогда ток будет идти без остановки, не истощая материала, и мы будем обладать бесконечным источником энергии в нарушение второго закона термодинамики! Но если вы действительно соедините p -область с n -областью проводами, никакого тока не будет. И легко понять почему.
Возьмем сперва проводничок из материала без примесей. Если подсоединить его к n -области, получится переход, на котором возникнет разность потенциалов. Пусть, скажем, она составит половину всей разности потенциалов между p - и n -областями. А когда мы подведем нашу чистую проволоку к p -области перехода, то там снова, на новом переходе, возникнет разность потенциалов, опять равная половине падения потенциала на p — n -переходе. Во всех переходах разности потенциалов так приладятся друг к другу, что никакой ток в схеме не пойдет. И какой бы вы проволокой ни начали соединять обе стороны p — n -перехода, у вас всегда выйдет два новых перехода, и до тех пор, пока температура всех переходов одинакова, скачки потенциалов на переходах будут компенсировать друг друга и тока не будет. Оказывается, однако (если вы рассчитаете все детали), что если у части переходов температура отличается от температуры других частей, то ток пойдет. Этот ток будет нагревать одни переходы и охлаждать другие, и тепловая энергия будет превращаться в электрическую. Это явление определяет собой действие термопар, применяемых для измерения температуры, и термоэлектрических генераторов. То же явление используется и в небольших холодильниках.
Но если мы не в состоянии измерять разность потенциалов между двумя сторонами p — n -перехода, то откуда уверенность, что перепад потенциалов, показанный на фиг. 12.9, действительно существует? Ну, во-первых, можно осветить переход светом. Когда фотоны света поглощаются, они могут образовать пару электрон — дырка. В том сильном электрическом поле, которое существует в переходе (равном наклону потенциальной кривой на фиг. 12.9), дырку затянет в p -область, а электрон — в n -область. Если теперь обе стороны перехода подсоединить ко внешней цепи, эти добавочные заряды вызовут ток. Энергия света перейдет в электрическую энергию перехода. Солнечные батареи, которые генерируют для спутников электрическую мощность, действуют именно на этом принципе.
Обсуждая свойства полупроводникового перехода, мы предполагали, что дырки и электроны действуют более или менее независимо, если не считать того, что они как-то все же приходят в тепловое равновесие. Когда мы говорили о токе, получающемся при освещении перехода светом, то предполагали, что электрон или дырка, образующиеся в области перехода, прежде чем аннигилировать с носителем противоположной полярности, успеют попасть в само тело кристалла. В непосредственной близости от перехода, где плотности носителей обоих знаков примерно одинаковы, аннигиляция пар электрон — дырка (называемая часто «рекомбинацией») — очень важный эффект, и его следует принимать во внимание при детальном анализе полупроводникового перехода.
Мы предполагали, что дырка или электрон, образуемые в области перехода, имеют хороший шанс еще до рекомбинации попасть в основное тело кристалла. Типичное время, требующееся электрону или дырке для того, чтобы найти противоположного партнера и аннигилировать, для типичных полупроводниковых материалов колеблется между 10 -3и 10 -7 сек . Кстати, это время много больше времени среднего свободного пробега τ между столкновениями с узлами рассеяния в кристалле,— того времени, которым мы пользовались при анализе проводимости. В типичном p — n -переходе время, требуемое на то, чтобы смести в тело кристалла электрон или дырку, возникшую в области перехода, намного меньше времени рекомбинации. Поэтому большинство пар вливается во внешний ток.
§ 5. Выпрямление на полупроводниковом переходе
Теперь мы покажем, как получается, что p — n -переход действует как выпрямитель. Если мы к переходу приложим напряжение одного знака, то пойдет большой ток, если другого — тока почти не будет. А если к переходу приложить переменное напряжение, то ток пойдет только в одну сторону — он «выпрямится». Посмотрим еще раз, что получается в условиях равновесия, описанных кривыми фиг. 12.9. В материале p -типа имеется высокая концентрация N p положительных носителей. Эти носители повсюду диффундируют, и некоторое их количество каждую секунду приближается к переходу. Этот ток положительных носителей, достигающих перехода, пропорционален N p . Большая часть их, однако, разворачивается обратно, не будучи в состоянии взять высокий потенциальный холм у перехода, и только доля e - qV /ϰ T их проходит дальше. Имеется также ток положительных носителей, приближающихся к переходу с другой стороны. Этот ток тоже пропорционален плотности положительных носителей в n -области, но здесь плотность носителей намного ниже плотности в p -области. Когда положительные носители приближаются из n -области к переходу, они обнаруживают перед собой холм с отрицательным склоном и сходу соскальзывают под гору, на p -сторону перехода. Обозначим этот ток I 0. В условиях равновесия токи в обе стороны одинаковы. Значит, можно ожидать, что будет выполняться следующее соотношение:
(12.12)
Вы замечаете, что оно на самом деле совпадает с (12.10). Мы просто вывели его другим способом.
Допустим, однако, что мы снизили напряжение на n -стороне перехода на величину ΔV — это можно сделать, приложив к переходу внешнюю разность потенциалов. Теперь разница в потенциалах по обе стороны потенциального холма уже не V , а V -Δ V . У тока положительных носителей из p -области в n -область теперь в показателе экспоненты будет стоять именно эта разность потенциалов. Обозначая этот ток через I 1;имеем
Этот ток превосходит ток I 0в e - q Δ V /ϰ T раз. Значит, между I 1и I 0существует следующая связь:
(12.13)
Интервал:
Закладка: