Ричард Фейнман - КЭД – странная теория света и вещества

Тут можно читать онлайн Ричард Фейнман - КЭД – странная теория света и вещества - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство АСТ, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    КЭД – странная теория света и вещества
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-17-982850-1
  • Рейтинг:
    2.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - КЭД – странная теория света и вещества краткое содержание

КЭД – странная теория света и вещества - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Американский физик Ричард Фейнман – один из создателей атомной бомбы, специалист по квантовой электродинамике, Нобелевский лауреат, но прежде всего – незаурядная, многогранная личность, не вписывающаяся в привычные рамки образа «человека науки». Великолепный оратор, он превращал каждую свою лекцию в захватывающую интеллектуальную игру. На его выступления рвались не только студенты и коллеги, но и люди просто увлеченные физикой.
В основу этой книги легли знаменитые лекции Ричарда Фейнмана, прочитанные им в Калифорнийском университете.
В этих лекциях прославленный физик рассказывает о квантовой электродинамике – теории, в создании которой принимал участие он сам, – рассказывает простым и доступным языком, понятным даже самому обычному читателю.
Не зря даже о самом первом, принстонском издании «КЭД» критики писали: «Книга, которая полностью передает захватывающий и остроумный стиль Фейнмана, сделавшего квантовую электродинамику не только понятной, но и занятной!»

КЭД – странная теория света и вещества - читать онлайн бесплатно ознакомительный отрывок

КЭД – странная теория света и вещества - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 1 Фотоумножитель может обнаружить единичный фотон Когда фотон ударяется - фото 2

Рис. 1. Фотоумножитель может обнаружить единичный фотон. Когда фотон ударяется о пластинку А, он выбивает оттуда электрон, который притягивается к положительно заряженной пластинке В и высвобождает еще больше электронов. Этот процесс продолжается до тех пор, пока миллиарды электронов не попадут на последнюю пластинку L и не образуют электрический ток, который усиливается обычным усилителем. Если к усилителю подключен динамик, то каждый раз, когда фотон данного цвета попадает на пластинку А, раздаются щелчки одинаковой громкости.

Если вы расставите вокруг много фотоумножителей и будете светить очень тусклым светом в разных направлениях, свет попадет в один из фотоумножителей и произведет щелчок полной громкости. Все или ничего: если один фотоумножитель срабатывает в данный момент, никакой другой уже не срабатывает (кроме того редкого случая, когда два фотона одновременно вылетают из источника света). Свет не распадается на «половинки частиц», которые летят в разные места.

Хочу особенно подчеркнуть, что свет существует именно в виде частиц – это очень важно знать. Это особенно важно знать тем из вас, кто ходил в школу, где, возможно, что-то говорили о волновой природе света. Я говорю вам, как он на самом деле ведет себя – как частицы.

Вы можете сказать, что это только фотоумножитель показывает, что свет состоит из частиц. Но нет, любой прибор, достаточно чувствительный, чтобы реагировать на слабый свет, всегда в конце концов обнаруживал то же самое: свет состоит из частиц.

Я буду исходить из того, что вы представляете себе свойства света в повседневных обстоятельствах – например, что свет распространяется прямолинейно, что преломляется, попадая в воду, что, когда свет отражается от зеркальной поверхности, угол падения равен углу отражения, что свет можно разложить на цвета, что очень красивые цвета видны на луже, когда в нее попадет немного масла, что линза фокусирует свет и т. д. Я буду использовать эти знакомые вам явления, чтобы проиллюстрировать действительно странное поведение света и постараюсь объяснить эти явления при помощи квантовой электродинамики. Я рассказал вам о фотоумножителе, чтобы проиллюстрировать основополагающий факт, который мог быть вам неизвестен, – что свет состоит из частиц, но теперь, надеюсь, вы знаете и это!

Полагаю, всем вам известно, что свет частично отражается от некоторых поверхностей, например от воды. Сколько романтических полотен посвящено отражению в озере лунного света (и сколько раз вы попадали в беду из-за лунного света, отражавшегося в озере!). Глядя на воду, вы можете увидеть (особенно днем) то, что находится в глубине, но видите также и отражение от поверхности. Другой пример – стекло. Если днем в комнате горит лампа, и вы смотрите в окно, то вам видно и то, что происходит снаружи, и тусклое отражение лампы в комнате. Таким образом, свет частично отражается от поверхности стекла.

Прежде чем продолжить, хочу обратить ваше внимание на некое упрощение, которое я сделаю вначале и которое будет исправлено позже: говоря о частичном отражении света от стекла, я буду предполагать, что свет отражается только от поверхности стекла. В действительности кусок стекла – это страшно сложное чудовище, в котором кишит огромное количество электронов. Когда фотон попадает в стекло, он взаимодействует с электронами во всем стекле, а не только с теми, что на поверхности. Фотон и электроны исполняют некий танец, конечный результат которого точно такой же, как если бы фотон ударялся только о поверхность. Так что позвольте мне пока сделать такое упрощение. А позже я покажу вам, что на самом деле происходит в стекле, и вы поймете, почему окончательный результат тот же.

Теперь я хотел бы описать вам один эксперимент и сообщить его удивительные результаты. В этом эксперименте несколько фотонов одного цвета, допустим, красного, попадают из источника на кусок стекла (см. рис. 2). Фотоумножитель установлен в точке А над стеклом и ловит все фотоны, отраженные передней поверхностью. Чтобы определить, сколько фотонов проходит через переднюю поверхность, другой фотоумножитель установлен в точке В внутри стекла. Не обращайте внимания на очевидные трудности, связанные с установкой фотоумножителя внутри стекла. Каковы же результаты этого эксперимента?

Рис 2 Эксперимент для измерения частичного отражения света от одной - фото 3

Рис. 2. Эксперимент для измерения частичного отражения света от одной поверхности стекла. Из каждых 100 фотонов, покидающих источник света, 4 отражаются от передней поверхности и попадают в фотоумножитель А, в то время как остальные 96 проходят сквозь переднюю поверхность и оказываются в фотоумножителе В.

Из каждых 100 фотонов, летящих вниз под прямым углом к стеклу, в среднем 4 попадают в точку А и 96 – в В. Итак, в этом случае частичное отражение означает, что 4 % фотонов отражаются передней поверхностью стекла, в то время как остальные 96 % пропускаются. Мы уже столкнулись с большой трудностью: как это свет может частично отражаться? Каждый фотон заканчивает свой путь в А или в В – как фотон решает, куда ему лететь, в А или в В ? (Смех в аудитории.) Это может звучать как шутка, но мы не можем просто смеяться. Нам придется объяснить это при помощи теории! Частичное отражение – это уже непостижимая загадка, и это была очень трудная задача для Ньютона.

Можно придумать несколько возможных теорий, объясняющих частичное отражение света от стекла. Одна из них состоит в том, что 96 % поверхности стекла – это «дырки», которые пропускают свет, в то время как остальные 4 % заняты маленькими «пятнышками» отражающего материала (см. рис. 3). Ньютон понимал, что это объяснение не годится [2] Откуда он знал? Ньютон был великим человеком, он писал: «Потому что я могу отполировать стекло». Вас может удивить, с чего он взял, что если можно отполировать стекло, то не должно быть дырок и пятен? Ньютон сам шлифовал свои линзы и зеркала и знал, что он делает при шлифовке – царапает поверхность стекла порошками все более тонкого помола. По мере того как царапины становятся все тоньше и тоньше, поверхность стекла меняет свой облик и из матово-серой (так как свет рассеивается большими царапинами) становится прозрачно-ясной (потому что очень тонкие царапины пропускают свет насквозь). Таким образом, он увидел, что невозможно предположить, будто очень мелкие неровности, вроде царапинок или пятен и дырок, могут влиять на свет. В действительности он обнаружил, что верно обратное. Тончайшие царапинки и, следовательно, такие же маленькие пятнышки не оказывают влияния на свет. Так что теория дырок и пятен не годится. . Через минуту мы столкнемся с такой странной особенностью частичного отражения, что она собьет с толку любого сторонника теории «дырок и пятен» – или другой какой-нибудь разумной теории!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




КЭД – странная теория света и вещества отзывы


Отзывы читателей о книге КЭД – странная теория света и вещества, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x