Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную]
- Название:Математика космоса [Как современная наука расшифровывает Вселенную]
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5228-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] краткое содержание
«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.
Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Математика космоса [Как современная наука расшифровывает Вселенную] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Гипотеза гигантского столкновения в ее предпочитаемой нынче инкарнации датируется 1984 годом. Тело, с которым столкнулась Земля, даже имеет конкретное название: Тейя. Единорог, правда, тоже имеет название, но не существует. Если Тейя когда-то существовала, то какие-то следы этого могли сохраниться только на Луне и в глубинах Земли, так что придется обходиться косвенными данными.
Идеи редко бывают по-настоящему оригинальными, вот и эта восходит по крайней мере к Реджинальду Дали. В свое время он возражал Дарвину с его теорией разрушения по той причине, что если посчитать аккуратно, то нынешняя орбита Луны при моделировании назад во времени не приводится точно к Земле. При столкновении, утверждал Дали, получилось бы намного лучше. Главной очевидной проблемой на тот момент был вопрос: столкновение с чем? В те дни астрономы и математики считали, что планеты сформировались практически на своих нынешних орбитах. Но по мере того как компьютеры набирали мощь и ученые получали возможность разбираться в следствиях Ньютоновой математики при более реалистичных условиях, становилось ясно, что Солнечная система на ранних этапах своего существования все время менялась, причем достаточно резко. В 1975 году Уильям Хартманн и Дональд Дэвис провели расчеты, по которым после формирования планет в системе осталось еще несколько свободных тел меньшего размера. Возможно, эти тела были захвачены и стали лунами, а возможно, столкнулись с чем-то — друг с другом или с какой-нибудь планетой. Вот при таком столкновении, утверждали исследователи, и могла образоваться Луна, что согласуется со многими ее свойствами.
В 1976 году Элестер Кэмерон и Уильям Уорд предположили, что с Землей столкнулась другая планета размером с Марс и часть вещества при этом выплеснулась одной гигантской каплей и образовала Луну. Разные ингредиенты вели бы себя по-разному под действием мощных сил и тепла, порожденных столкновением. Силикатные породы (на обоих телах) испарились бы, но железное ядро Земли и любое металлическое ядро, если бы врезавшееся тело им обладало, остались бы на месте. В результате железа в составе Луны оказалось бы много меньше, чем в составе Земли, а вот поверхностные породы Луны и мантия Земли, сконденсировавшиеся обратно из испарившихся силикатов, оказались бы очень похожи по составу.
В 1980-е годы Кэмерон провел с разными коллегами компьютерное моделирование последствий такого столкновения; моделирование показало, что лучше всего современным данным и наблюдениям соответствует столкновение Земли с телом размером с Марс — Тейей. Поначалу казалось, что Тейя могла просто выплеснуть в пространство часть земной мантии, внеся при этом очень небольшую часть собственного материала в породы, из которых образовалась Луна. Это объяснило бы близкое сходство двух типов пород. В самом деле, близость по составу поверхностных пород Луны и пород мантии Земли рассматривалась как сильный довод в пользу гипотезы ударного формирования Луны.
Астрономы в большинстве своем принимали эту идею до самого последнего времени. Тейя врезалась в первозданную Землю почти сразу (по космологическим меркам) после формирования Солнечной системы, между 4,50 и 4,45 миллиарда лет назад. Два мира столкнулись не лоб в лоб, а под углом приблизительно 45°. Столкновение было сравнительно медленным (опять же по космологическим меркам) и проходило на скорости около четырех километров в секунду. Расчеты показывают, что если бы у Тейи было железное ядро, то оно смешалось бы с основной массой Земли. Будучи тяжелее мантийных пород, все это должно было погрузиться в глубину и объединиться с ядром Земли; не забывайте, что все породы на этой стадии были расплавлены. Это объясняет, почему в составе Земли намного больше железа, чем в составе Луны. Примерно пятая часть мантии Тейи и большое количество земных силикатных пород было выброшено в пространство. Половина выброшенного оказалась в конце концов на околоземной орбите и собралась воедино, образовав Луну. Вторая половина вышла из-под действия тяготения Земли и оказалась на орбите вокруг Солнца. Большая часть этого вещества осталась на орбитах, близких к земной, поэтому со временем столкнулась либо с Землей, либо со свежесформированной Луной. Многие лунные кратеры возникли в результате именно этих вторичных столкновений. Однако на Земле эрозия и другие процессы стерли следы большинства подобных кратеров.
Столкновение с Тейей добавило Земле массы и значительно увеличило ее момент импульса: настолько, что она стала вращаться вокруг своей оси каждые пять часов. Слегка сплющенная форма Земли, сжатая у полюсов, развивала приливные силы, которые постепенно сориентировали орбиту Луны вдоль земного экватора и стабилизировали ее там.
Измерения показывают, что кора Луны на той стороне, что сейчас обращена от Земли, толще. Считается, что некоторая часть выплеснутого вещества на орбите Земли первоначально не попала в собираемую Луну. Вместо этого в так называемой «точке Лагранжа», то есть на той же орбите, что Луна, но на 60° впереди нее (см. главу 5), собралась вторая луна, поменьше. Через 10 миллионов лет, поскольку оба тела медленно дрейфовали прочь от Земли, эта точка стала нестабильной, и меньшая луна столкнулась с большей. При этом ее вещество распределилось по дальней стороне Луны, сделав кору толще.
Я часто использую слова «моделирование» и «расчет», но вы должны понимать, что невозможно ничего посчитать, если не знаешь, что именно и как нужно вычислить, и невозможно ничего смоделировать, просто «послав это в компьютер». Кто-то должен спланировать вычисления до мельчайших подробностей; кто-то должен написать программу, которая скажет компьютеру, что и как считать. Эти задачи редко бывают прямолинейными и, как правило, не решаются легко.
Моделирование космического столкновения — ужасающе сложная вычислительная задача. Вещество сталкивающихся тел может быть твердым, жидким или газообразным, а к каждому из этих случаев применимы разные физические правила, требующие разных математических формулировок. В столкновении задействованы по крайней мере четыре типа вещества — это кора и мантия для Тейи и то же для Земли. Породы, в каком бы состоянии они ни были, могут дробиться на куски и сталкиваться. Их движение определяется «условиями свободного края»; это означает, что жидкостная динамика имеет место не в замкнутой области пространства с фиксированными стенами. Напротив, жидкость сама «решает», где пройдет ее граница, и ее местоположение меняется по мере того, как жидкость движется. Разбираться со свободным краем — и теоретически, и вычислительно — намного сложнее, чем с фиксированным. Наконец, при столкновении действуют гравитационные — а значит, нелинейные — силы. То есть вместо того, чтобы меняться пропорционально расстоянию, они меняются по обратно-квадратичному закону. Не секрет, что нелинейные уравнения решать намного сложнее, чем линейные.
Читать дальшеИнтервал:
Закладка: