Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную]
- Название:Математика космоса [Как современная наука расшифровывает Вселенную]
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5228-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Математика космоса [Как современная наука расшифровывает Вселенную] краткое содержание
«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.
Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».
Математика космоса [Как современная наука расшифровывает Вселенную] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Если вы считаете, что это звучит неправдоподобно, я вас не виню. Это соответствует истине, но только в очень специфическом смысле. Главным потенциальным источником непонимания здесь служит слово «вызвать». Трудно понять, как из крохотного количества энергии, заключенного во взмахе крыла, может родиться громадная энергия урагана. Ответ заключается в том, что ничего подобного на самом деле не происходит. Энергия урагана не исходит из взмаха крыла: она поступает из других источников и перераспределяется, когда крыло взаимодействует с остальной, неизменной в других отношениях погодной системой.
После взмаха крыла мы не получаем в точности ту же погоду, что и до взмаха, но с лишним ураганом. Нет, меняется весь рисунок погоды по всему миру. Поначалу изменение невелико, но оно растет — не в смысле энергии, но в смысле отличия от того, что было бы, не взмахни бабочка крылом. И эти отличия стремительно становятся большими и непредсказуемыми. Если бы бабочка взмахнула крыльями на две секунды позже, она могла вместо этого «вызвать» торнадо на Филиппинах, скомпенсированный буранами по всей Сибири. Или месяц устойчивой погоды в Сахаре, если на то пошло.
Математики называют этот эффект «чувствительность к начальным условиям». В хаотической системе входные сигналы, очень слабо различающиеся между собой, вызывают результаты, отличающиеся очень сильно. Этот эффект вполне реален и очень часто встречается. Именно поэтому, в частности, тесто так тщательно замешивают. Каждый раз, когда тесто растягивают, соседние крупинки муки расходятся. Затем, когда тесто складывают и сминают, чтобы не дать ему убежать из опары, крупинки, прежде находившиеся далеко, могут оказаться рядом (а могут и не оказаться). Местное растягивание в сочетании со складыванием создает хаос.
Это не просто метафора, это описание на обычном бытовом языке фундаментального математического механизма, порождающего хаотическую динамику. С математической точки зрения атмосфера Земли похожа на тесто. Физические законы, управляющие погодой, локально «растягивают» атмосферу, но она не уходит никуда с планеты, так что ей приходится «накладываться» на себя. Следовательно, если бы мы могли прогнать динамику погоды на Земле дважды с той единственной разницей, что бабочка в начальный момент взмахнула крыльями — или не взмахнула , — то результирующие варианты разошлись бы экспоненциально. Погода, конечно, не перестала бы быть погодой, но она стала бы другой.
На самом деле мы не в состоянии прогнать реальную погоду дважды с разными начальными условиями, но именно так делаются прогнозы с использованием моделей, отражающих подлинную атмосферную физику. Крохотные изменения в числах, представляющих текущее состояние погоды, при подстановке в уравнения, предсказывающие ее будущее состояние, приводят к масштабным изменениям прогноза. К примеру, область высокого давления над Лондоном в одном прогоне модели может смениться областью низкого давления в другом. Современный способ обойти при прогнозировании этот неприятный эффект состоит в многократном моделировании погоды с небольшими случайными изменениями начальных условий и использовании результатов для количественной оценки вероятности различных прогнозов. Именно это означают слова «грозы с вероятностью 20 %».
На практике невозможно вызвать конкретный ураган при помощи специально выдрессированной бабочки, потому что предсказание результата, вызванного взмахом ее крыльев, ограничено тем же горизонтом предсказуемости. Тем не менее в другом контексте, скажем, в связи с сердцебиением, подобного рода «хаотическое управление» может обеспечить эффективный путь к желаемому динамическому поведению. В главе 10 мы приведем несколько астрономических примеров этого в контексте космических проектов.
Я вас не убедил? Недавнее открытие, касающееся раннего периода существования Солнечной системы, ярко высветило этот вопрос. Представим себе, что некая инопланетная сверхдержава способна была бы прогнать процесс образования Солнечной системы из первичного газового облака заново из того же самого начального состояния, но с добавлением одной-единственной лишней молекулы газа. Насколько иной в этом случае была бы сегодняшняя Солнечная система?
Хочется предположить, что она не слишком сильно отличалась бы от реальной. Но не забывайте про эффект бабочки. Математики доказали, что движение молекул в газе происходит хаотично, поэтому вряд ли стоило бы удивляться, если бы это оказалось верным и в отношении коллапсирующих газовых облаков, хотя детали процессов формально и различаются. Чтобы выяснить это, Фолькер Хоффман и его сотрудники смоделировали динамику газового диска на той стадии, когда в нем содержится 2000 планетезималей; исследователи хотели проследить, как столкновения заставляют эти тела собираться в планеты. Они сравнили результат с развитием моделей, в которых присутствовало два газовых гиганта с двумя различными вариантами для их орбит. Для каждого из трех сценариев моделирование было проведено десяток раз с чуть разными начальными условиями. На каждый прогон модели ушел примерно месяц работы суперкомпьютера.
Выяснилось, что столкновения планетезималей, как и ожидалось, носят хаотичный характер. Эффект бабочки проявляется очень драматично: стоит изменить начальное положение одной-единственной планетезимали всего на 1 мм, и получается совершенно другая планетная система. Экстраполируя этот результат, Хоффман считает, что добавлением единственной молекулы газа к точной модели нарождающейся Солнечной системы (будь такое возможно) вы могли бы изменить результат так сильно, что Земля не сформировалась бы.
Вот вам и часовой механизм.
Прежде чем углубиться в рассуждения о том, насколько невероятным при этом становится наше собственное существование, и привлекать к этому вопросу божественную руку провидения, стоит принять во внимание еще один аспект этих расчетов. Хотя каждый прогон модели приводит к возникновению планет разных размеров на разных орбитах, все солнечные системы, рождающиеся в заданном сценарии, очень похожи между собой. Без газовых гигантов мы получаем около 11 каменных миров, уступающих в большинстве своем по размерам Земле. Добавляем газовые гиганты — это более реалистичная модель — и получаем четыре каменные планеты с массами от половинки земной до чуть больше массы нашей планеты. Это очень близко к тому, что есть на самом деле. Эффект бабочки меняет орбитальные элементы, но общая структура системы получается примерно одинаковой.
То же самое происходит и в погодных моделях. Взмах крылышек … и на земном шаре устанавливается совсем не такая погода, какой она была бы без этого взмаха, — но это все равно погода . Землю не заливает внезапно жидким азотом, и буран из гигантских лягушек тоже не налетает. Так что, хотя наша Солнечная система, скорее всего, не возникла бы в точности в нынешней своей форме, если бы первоначальное газовое облако было чуть-чуть иным, на ее месте непременно возникло бы что-то очень похожее. Так что шансов на появление живых организмов, вероятно, было бы не меньше.
Читать дальшеИнтервал:
Закладка: