Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Камера с линзами была создана в то время, когда были изобретены способы записывать изображения. Для этого изображение должно быть сформировано на поверхности, на которую нанесены химические вещества, реагирующие на свет [84] Изложение деталей этого процесса более уместно в учебнике по химии и здесь рассматриваться не будет. . В эту работу внесли свой вклад: французский физик Жозеф Нисефор Ньепс (1765–1833), французский художник Луи Жак Манде Дагер (1789–1851) и английский изобретатель Уильям Генри Фокс Толбот (1800–1877). К середине XIX века камера была уже вполне практичным устройством для создания и хранения изображений и фотография («светопись») стала незаменимой во всех областях научной работы.

Для получения ярких изображений нужно собрать как можно больше света. Для этого требуется линза большого диаметра с коротким фокусом. Чем больше диаметр, тем больше света собирается в изображение. Необходимость в коротком фокусе обоснована тем, что, как уже описывалось в гл. 2, применительно к зеркалам, чем ближе изображение к линзе, тем оно меньше. А чем меньше изображение, создаваемое из фиксированного количества света, тем оно ярче. Чтобы измерить яркость изображения, которое может создать линза, мы должны учесть оба фактора и узнать отношение фокусного расстояния (f) к диаметру (D). Это отношение, f/D, называется фокусным числом. При уменьшении f и/или увеличении D фокусное число уменьшается. Чем меньше фокусное число, тем ярче изображение.

Изображение, изначально создаваемое на пленке с химическим покрытием, становится темным в интенсивно освещенных точках (поскольку действие света заключается в выделении черных частиц металлического серебра) и светлым — в слабо освещенных точках. Таким образом, изображение получается негативным — светлым при изображении темного и темным при изображении светлого. Если свет проходит сквозь него и попадает на бумагу, покрытую светочувствительными химикатами, получается негатив негатива. Тогда вновь достигается оригинальное соотношение светлого и темного. Это позитив, и это окончательная картинка.

Позитив может быть напечатан на прозрачной пленке. В таком случае маленький, но сильный источник света может быть сфокусирован на ней посредством линзы и зеркала, а изображение — спроецировано на экран. Выходя из проектора, лучи расходятся в стороны, и изображение на экране может быть очень сильно увеличено по сравнению с изначальным позитивом. Такие устройства могут быть использованы в некоторых случаях для демонстрации фотографий, но гораздо более обширное применение они получили как средства массового развлечения.

Следующая возможность проистекает из того факта, что, когда клетки роговицы реагируют на определенный образец света и темноты, им требуется доля секунды, чтобы восстановиться и приготовиться к принятию следующего образца. Если в темной комнате помахать длинной лучиной с красным угольком на конце, то вы увидите не отдельную движущуюся точку света, а непрерывную кривую, которой можно выписывать круги и овалы.

А представьте теперь, что движущиеся объекты быстро фотографируют несколько раз подряд. На каждой фотографии положение объекта окажется слегка измененным по сравнению с предыдущей. В 1889 году американский изобретатель Томас Алва Эдисон (1847–1931) поместил такие фотографии на непрерывную ленту с перфорацией по краю. За эту перфорацию пленку можно было протягивать линейно с постоянной скоростью с помощью равномерно вращающейся звездочки. Если настроить свет проектора таким образом, чтобы он быстро мигал, то каждая вспышка будет последовательно выдавать на экран изображение, соответствующее одному кадру. Тогда глаз видит одну картинку за другой, причем последующая лишь немного отличается от предыдущей. Поскольку глаз еще будет восстанавливаться после предыдущей картинки, он будет еще видеть ее в тот момент, когда на экране уже появится следующая. Таким образом достигается иллюзия непрерывного движения. Так были представлены «живые картинки».

Увеличение

Любой, кто имел дело с собирающими линзами, прекрасно знает, что предмет, на который глядишь сквозь них, кажется больше. Похоже, что это знали уже в древности, потому что такой же эффект достигается и просто с помощью стеклянного сосуда округлой формы, в который налили воду.

Чтобы понять это, нужно сначала уяснить, что мы не воспринимаем истинные размеры предмета напрямую, а лишь судим о них по набору косвенных признаков, среди которых — угол, под которым падает свет от краев предмета.

Например, допустим, что в 25 см от глаз горизонтально держат палочку длиной 4 см. Угол между лучами света, попадающими в глаз с одного и с другого концов палочки, составляет 9,14°. Другими словами, если мы посмотрим прямо на один конец палочки, а затем повернем голову, чтобы посмотреть прямо на другой, нам придется повернуть ее на 9,14°. Это угол зрения, или угловой диаметр предмета.

Если бы палочка была только два сантиметра длиной, то угол зрения составил бы 4,58°, а для восьмисантиметровой палочки — 18,8°. Угол зрения не совсем пропорционален размеру, но при небольших значениях — почти. На собственном опыте мы познаем эти пропорции и автоматически оцениваем относительный размер предметов по углу зрения.

Однако угловой размер предмета также зависит и от расстояния. Допустим, что восьмисантиметровая палочка, находясь на расстоянии 25 см, занимает угол зрения в 18,18°. На расстоянии 50 см угол зрения будет уже 9,14°, а на расстоянии 100 см — 4,58°. Другими словами, мы также хорошо знаем по собственному опыту, что чем дальше предмет отстоит от глаза, тем меньше он кажется. Большой предмет, отстоящий далеко от глаза, будет выглядеть меньше, чем маленький, находящийся близко к глазу. Так, восьмисантиметровая палочка, отстоящая от глаза на 100 см, будет занимать угол зрения меньше, чем четырехсантиметровая, находящаяся на расстоянии 25 см, и соответственно будет выглядеть меньше.

Не похоже, чтобы это могло ввести нас в заблуждение. С малых лет мы приучаемся принимать в расчет при оценке истинных размеров предмета не только угол зрения, но и расстояние. Для того чтобы, взглянув сперва на отдаленную восьмисантиметровую палочку, посмотреть потом на приближенную четырехсантиметровую, наш глаз должен изменить хрусталик, а также оба наших глаза должны изменить направление взгляда, чтобы оба они сфокусировались на одном и том же предмете (чем ближе предмет, тем сильнее глазам надо скоситься к переносице). Нам не обязательно надо осознавать, что наши хрусталики изменяются или что взгляд сходится к переносице; мы просто правильно оцениваем эти ощущения и можем сделать из них вывод, что четырехсантиметровая палочка находится ближе. Приняв это во внимание наряду с углом зрения, мы обычно без проблем можем сделать вывод, что палочка, кажущаяся меньше, на самом деле больше. Мы даже можем убедить себя, что она и выглядит больше.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x