Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А еще они показали, как опасно устанавливать пределы человеческих возможностей. Французский философ Огюст Комте, пытаясь привести пример абсолютного предела, наложенного на познания человека, сказал, что человек никогда не будет знать, из чего состоят звезды. Если бы он прожил на несколько лет больше, он бы увидел, как его абсолютный предел легко превзойден.

Дифракция

Открытие, что белый цвет на самом деле есть смешение множества цветов, поставило перед физиками новые серьезные вопросы. Пока свет воспринимался как нераздельный чистый феномен, геометрической оптики было достаточно. Можно было рисовать линии, представляющие лучи света, и феномены отражения и преломления можно было анализировать, не принимая в расчет природу света. Этот вопрос оставался философам.

Если же принять свет как смесь цветов, становится необходимостью искать объяснения того, каким образом свет одного цвета отличается от другого. Для этого следовало рассмотреть вопрос о природе света, как такового, — так родилась физическая оптика.

Как было указано в начале книги, есть два пути решить вопрос о воздействии на расстоянии. Один — это предположить некие частицы, стремящиеся сквозь пространство, которое рассматривается как пустое, а второй — предположить некие волны, катящиеся сквозь пространство, которое не является полностью пустым. Во второй половине XVII века для света предлагались оба типа объяснения.

Наиболее явная из двух альтернатив — теория частиц, которую поддерживал сам Ньютон. Для начала — она объясняет прямолинейное распространение света. Предположим, что светящиеся объекты суть постоянно горящие крошечные частицы, разлетающиеся во всех направлениях. Если эти частицы считать не имеющими массы, то светящееся тело не должно терять вес из-за того, что оно светится, и на свет не будет действовать сила гравитации. Не встречая препятствий, свет, если на него не действует сила притяжения, должен двигаться по прямой с постоянной скоростью, как того требует первый закон Ньютона (см. ч. I). Частицы света должны останавливаться и поглощаться непрозрачными препятствиями, а частицы, пролетевшие мимо препятствия, должны создавать резкую границу между освещенной областью и областью, находящейся в тени от препятствия.

Для Ньютона альтернатива в виде волновой теории была неприемлема. В то время ученым были знакомы только волны на воде и звуковые волны (см. ч. I), а они не обязательно движутся по прямой и не приводят к образованию резких теней. Звуковые волны обтекают препятствия, потому что, находясь за углом, мы все равно слышим звук; и на воде волны заметно обходят препятствие, например плывущее бревно или дерево. Казалось разумным предположить, что эти свойства характеризуют волны в целом.

Но и теория частиц имела узкие места. Пучки света могут пересекаться под любым углом, не воздействуя друг на друга в плане направления или цвета, что означает, что частички света, видимо, не сталкиваются и не отскакивают друг от друга, как это должны делать любые частицы. Более того, несмотря на оригинальные гипотезы, так и не нашлось удовлетворительного объяснения, почему некоторые частицы света дают ощущение красного, другие — зеленого и т. д. Конечно, частицы должны при этом чем-то отличаться друг от друга, но чем?

Некоторые из современников Ньютона приняли волновую теорию, которую отрицал сам Ньютон. Самым энергичным сторонником волновой теории в XVII веке был голландский физик Кристиан Хайгенс (1629–1695). У него не было реального свидетельства в пользу волн, но он выбивался из сил, чтобы доказать, что волны можно рассматривать таким образом, чтобы они соответствовали фактам геометрической оптики. В 1678 году он предположил, что, когда фронт волны занимает определенную линию, каждая точка на фронте выступает в роли источника круговых волн, распространяющихся независимо. Эти волны сливаются, и можно провести линию по касательной к бесчисленному множеству маленьких кругов с центрами в каждой точке изначального фронта волны. Такая касательная является новым фронтом волны, который служит отправной линией для следующего бесконечного количества круговых волн, к которым можно нарисовать еще одну общую касательную, и т. д.

Если анализировать волны таким образом, по принципу, который сейчас называется принципом Хайгенса, видно, что фронт волны будет распространяться вперед по прямой (по крайней мере, что касается отдельной его части) и будет отражен под углом отражения, равным углу падения, и т. д. Будучи нематериальными, эти световые волны не будут, пересекаясь, воздействовать друг на друга (и действительно, звуковые волны и волны в воде могут пересекаться, не влияя друг на друга).

Итак, казалось, что можно многое сказать и за и против каждой теории. Следовательно, нужно взглянуть на места, в которых две теории различаются, и посмотреть, какая из них соответствует природе описываемого ими феномена. Такие наблюдения помогут отбросить ту или другую теорию (а может, и обе). Этот метод обычно используется, когда теории конфликтуют или пересекаются друг с другом.

Например, теория Хайгенса могла объяснить преломление при определенных условиях. Предположим, что прямой фронт волны под углом попадает на плоскую стеклянную поверхность. Один край фронта волны первым ударяется о стекло, но предположим, что его продвижение замедляется, когда он входит в стекло. В этом случае, когда о стекло ударяется следующий участок фронта, он догоняет предыдущий, потому что двигался сквозь воздух, а первый — медленнее, сквозь стекло. Каждый участок фронта волны, попадая в стекло, замедляет движение, и его догоняет последующий. Таким образом преломляется весь фронт волны и в результате входит в стекло под меньшим углом к нормали. Выходя из стекла, первая порция вновь набирает скорость и отрывается от тех порций, которые еще находятся в стекле. Выходящий свет возвращается к своему изначальному направлению.

Тут можно провести аналогию со строем солдат на марше, которые под углом сходят с дороги на вспаханное поле. Сходящие с дороги солдаты, естественно, замедляют ход; те, кто первыми вступают на поле, первыми замедляются, и весь строй (если они не будут специально выправляться) должен будет изменить направление марша по направлению к нормали, проводимой к границе между дорогой и полем.

Так волновая теория может объяснить преломление, предполагая, что скорость света в стекле меньше, чем в воздухе. Делая дальнейшие предположения, она может объяснить также и явление спектра. Если свет — форма волны, то у него должна быть длина волны (расстояние от гребня одной волны до гребня другой, см. ч. I). Тогда предположим, что эта длина волны меняется в зависимости от цвета, будучи самой длинной на красном краю спектра и самой короткой на фиолетовом краю. Тогда логично будет предположить, что короткие волны резче тормозятся, входя в стекло из воздуха, чем длинные. (Опять же, продолжая аналогию: марширующий солдат, у которого короткие шаги, большее количество раз увязнет во вспаханном поле, чем солдат, у которого шаги длиннее, если они будут проходить одно и то же расстояние. Тогда солдат с короткими шагами отстанет больше, и марширующий строй, если не будут предприниматься никакие попытки исправить положение, разобьется на группы, марширующие в слегка отличающихся направлениях в зависимости от длины своего шага.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x