Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Призмы Николя не только являются приборами для формирования плоскополяризованного света. Есть некоторые типы кристаллов, которые не просто расщепляют свет на два плоскополяризованных луча, а поглощают один и передают другой. Кристаллы сульфата йодохинина ведут себя именно так. К сожалению, невозможно создать большие полезные кристаллы из этого материала, потому что они получаются хрупкими и разрушаются при малейшем воздействии.

Однако в середине 1930-х годов студент Гарварда Эдвин Герберт Ленд (р. 1909) сообразил, что большие цельные кристаллы использовать не обязательно. Крошечные кристаллы, все сориентированные в одном и том же направлении, вполне могут быть использованы для этих же целей. Чтобы поддерживать их ориентацию и удерживать от дальнейшего разрушения, их следует включить в лист прозрачной гибкой пластмассы. Ленд закончил колледж в 1936 году, ушел в бизнес и создал то, что сейчас называют поляроидом. Он может выполнять все функции призм Николя более экономичным и удобным образом (правда, не столь точным).

Как обнаружил Малюс, лучи поляризованного света могут также быть произведены отражением под определенным верным углом от такого материала, как стекло; точный размер угла зависит от коэффициента преломления вещества. Солнечные очки, сделанные из поляроида, могут блокировать большую часть отраженного поляризованного света и урезать блеск.

Так, XIX век описал свет не просто как волну, а как поперечную волну; это решило много проблем, но и поставило некоторые проблемы.

Глава 6.

ЭФИР

Абсолютное движение

Если свет — это форма волны, то большинству ученых вплоть до начала XX века казалось логичным, что что-то должно колебаться, передавать эту волну. В случае волн на воде, к примеру, вверх и вниз движутся молекулы воды; в случае звуковых волн вперед и назад двигаются атомы или молекулы окружающей среды. Соответственно, казалось, что в вакууме должно что-то существовать, что-то, что двигалось бы вверх и вниз или вперед и назад, чтобы проводить волны света.

Это что-то не оказывает сколько-нибудь заметного влияния на движение небесных тел, поэтому логично было предположить, что это чрезвычайно разреженный газ. Этот чрезвычайно разреженный газ (или нечто иное, что заполняет вакуум) получил название «эфир», от слова, которое использовал Аристотель для описания вещества, из которого состоят небеса и небесные тела (см. ч. I). Эфир может быть также средой, в которой передается сила гравитации, и может быть идентичен эфиру, который проводит (или не проводит) свет. Для того чтобы выделить эфир, именно проводящий свет (на случай, если существуют несколько разновидностей эфира), в XIX веке было введено популярное словосочетание «люминофорный (что означает «светоносный») эфир».

Когда мы начинаем говорить об эфире, разница в свойствах между поперечными и продольными волнами становится важной. Продольные волны могут передаваться в среде, находящейся в любом состоянии — твердом, жидком или газообразном. Поперечные же волны могут передаваться только в твердых телах или при наличии гравитационного поля по поверхностям жидкостей (см. ч. I). Поперечные волны не могут проходить через массу газа или жидкости. Именно по этой причине в ранних версиях волновой теории света, в соответствии с которыми эфир считался газом, также считалось, что свет состоит из продольных волн, которые могут проходить через газ, а не из поперечных, которые не могут.

Однако когда вопрос о поляризации, казалось, твердо установил тот факт, что свет состоит из поперечных волн, концепцию эфира пришлось кардинально пересмотреть. Для того чтобы пропускать поперечные световые волны, эфир должен быть твердым телом; он должен быть веществом, все частицы которого жестко закреплены на своем месте.

Если бы это было так, то, когда участок эфира подвергался бы искажению под правильным углом по направлению от движения светового луча (как требовалось бы, если бы свет являлся поперечно-волновым явлением), силы, держащие этот участок на месте, толкнули бы его обратно. Этот участок пролетел бы свое прежнее место, его бы толкнуло назад, он бы снова пролетел свое законное место и т. д. (Именно так происходит в случае волн на воде, когда гравитация является той силой, которая обеспечивает толкание взад-вперед, а в случае звуковых волн эту работу проделывают межмолекулярные силы.)

Так, колебания эфира вверх-вниз и создают световую волну. Более того, скорость, с которой поперечная волна проходит сквозь среду, зависит от размера силы, толкающей обратно сдвинутую область. Чем больше сила, тем быстрее толчок обратно, тем быстрее движется волна. В случае света, движущегося со скоростью 186 000 миль в секунду, обратный толчок должен быть действительно сильным, и сила, удерживающая каждую часть эфира на месте, должна быть гораздо жестче, чем сталь.

Следовательно, светоносный эфир должен быть одновременно и чрезвычайно разреженным газом, и иметь жесткость выше, чем сталь. Такую комбинацию сложно представить [90] Такое сочетание противоречит «здравому смыслу», но такие соображения не должны стоять на пути принятия гипотезы. Мы воспринимаем своими чувствами очень ограниченную часть Вселенной, и наш опыт ограничивается очень узкой группой явлений. Поэтому опасно предполагать, что то, что кажется нам знакомым, должно быть истинным для всей Вселенной во всех своих аспектах. Например, в соответствии со «здравым смыслом» следует полагать, что Земля плоская и недвижимая, и этот аргумент усиленно использовался для того, чтобы оспаривать представление о Земле как о сферической и движущейся. , но в середине XIX века физики упорно работали, чтобы создать последовательную модель такого «твердого газа» и обнаружить его наличие. Они делали это по двум причинам. Во-первых, они не видели альтернативы, раз свет состоит из поперечных волн. Во-вторых, эфир был нужен им в качестве точки отсчета для измерения движения. Эта вторая причина чрезвычайно важна, потому что в отсутствие такой точки отсчета сама идея движения теряет четкость и все физические построения XIX века становятся зыбкими.

Чтобы объяснить, почему это происходит, давайте предположим, что вы находитесь на поезде, движущемся с постоянной скоростью по абсолютно прямым рельсам без вибрации. Обычно вы можете сказать, едет поезд или стоит, по наличию вибрации или по воздействию инерции, когда поезд ускоряется, тормозит или поворачивает. Однако, если поезд движется равномерно и без вибрации, все эти факторы устранены и обычные методы определения наличия движения становятся бесполезными.

Теперь представим, что в поезде есть окно, в которое вы видите другой поезд на соседних рельсах. В другом поезде тоже есть окно, и в него кто-то на вас смотрит. На языке жестов он спрашивает вас: «Мой поезд движется?» Вы смотрите на него, ясно видите, что он не движется, и отвечаете: «Нет, он стоит на месте». Тогда он выпрыгивает и разбивается насмерть, потому что оказывается, что оба поезда движутся в одном и том же направлении со скоростью 70 миль в час по отношению к поверхности Земли.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x