Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1868 году английский астроном Уильям Хёггинс (1824–1910) изучил линии спектра звезды Сириус и смог показать, что Сириус удаляется от нас со скоростью около 40 километров в секунду (позднейшие исследования несколько уменьшили эту цифру). С тех пор была измерена радиальная скорость (скорость удаления от нас или приближения к нам) тысяч звезд, и для большинства звезд она составила от 10 до 40 километров в секунду. Для одних звезд это оказалась скорость приближения, для других — скорость удаления.

В XX веке такие измерения проводились уже для света, идущего к нам из других галактик. Тогда быстро выяснилось, что происходит вселенское отдаление. За исключением двух ближайших к нам галактик, везде наличествовал неизменный сдвиг спектральных линий в сторону красного края — эффект, известный как красное смещение. Более того, чем тусклее светит (соответственно, предположительно, чем дальше находится) галактика, тем больше было красное смещение. Эту связь расстояния со скоростью удаления можно ожидать, только если галактики, все до одной, движутся все дальше и дальше друг от друга, как будто вся Вселенная расширяется; именно этой гипотезой и принято обычно объяснять красное смещение.

Смещение Допплера Физо Поскольку красное смещение возрастает по мере - фото 49
Смещение Допплера — Физо

Поскольку красное смещение возрастает по мере удаления галактики от нас, значит, скорость этого удаления тоже возрастает. Для очень удаленных галактик эти скорости уже можно выражать в значительных долях скорости света. В некоторых из удаленных галактик были отмечены скорости до 4/ 5скорости света. В таких условиях есть массивное смещение света в инфракрасный спектр, большее, чем может компенсировать заимствование из ультрафиолетового излучения, присутствующего в свете этих галактик. Поэтому общий объем видимого света из этих далеких галактик тусклее и это ставит предел тому, какую часть Вселенной мы можем увидеть в лучах видимого света, какими бы сильными ни были наши телескопы.

Поляризованный свет

Недостаточно просто сказать, что свет состоит из волн, потому что существуют два класса волн, свойства которых сильно различаются. Так, волны на воде — поперечные волны, волнообразно пульсирующие вверх и вниз под правильными углами к направлению, в котором движется сама волна. Звуковые волны — продольные волны, волнообразно пульсирующие вперед и назад в том же самом направлении, в котором движется сама волна (см. ч. I). К какой же разновидности относятся световые волны?

До второго десятилетия XIX века то меньшинство ученых, которые считали свет волновой формой, рассматривали его как продольную волну. В частности, так считал и Хайгенс. Однако оставался еще эксперимент XVII века по свету, который не объяснили удовлетворительно ни ньютоновская теория частиц, ни хайгенсовская теория продольных волн, и это в конце концов изменило всеобщую точку зрения.

Этот эксперимент был впервые описан в 1669 году голландским физиком Эразмом Бартолином (1625–1698). Он обнаружил, что кристалл исландского шпата (прозрачной формы карбоната кальция) производил двойное изображение. Если, например, кристалл поместить на поверхность, на которой есть черная точка, то сквозь него можно было увидеть две точки. Если кристалл вращать, сохраняя контакт с поверхностью, одна из точек оставалась неподвижной, в то время как вторая начинала вращаться вокруг первой. Очевидно, проходя сквозь кристалл, свет расщеплялся на два луча, преломлявшиеся по-разному. Это явление так и назвали «двойное преломление». Луч, воспроизводивший недвижимую точку, Бартолин назвал ординарным лучом, второй же — экстраординардным.

И Хайгенс и Ньютон принимали во внимание этот эксперимент, но не могли прийти к четкому заключению. Очевидно, если свет преломлен двумя различными способами, его составляющие, будь то частицы или продольные волны, должны чем-то различаться. Но чем?

Ньютон выдвинул какие-то смутные предположения, что частицы света могут различаться между собой полярностью, как магниты (см. гл. 9). Он не стал развивать эту теорию, но сама идея не была забыта.

В 1808 году французский военный инженер Этьен Луи Малюс (1775–1812) экспериментировал с некоторыми кристаллами, дающими двойное преломление. Он поместил один из них на солнечный свет, отраженный от окна, снаружи на некотором расстоянии от комнаты и обнаружил, что вместо того, чтобы увидеть пятно солнечного света раздвоенным (как он ожидал), он увидел его единым. Он решил, что, отражая свет, окно отразило только один «полюс» света, о котором говорил Ньютон. Отраженный свет он назвал поляризованным светом. Это было неправильное название, оно не отражало реального положения вещей, но закрепилось и уже, несомненно, будет сохраняться.

Когда вследствие экспериментов Янга вновь приобрела известность волновая теория света, вскоре стало ясно, что достаточно только признать, что свет имеет форму поперечных, а не продольных волн, и поляризацию света можно без труда объяснить. Янг пришел к этому выводу в 1817 году, а дальше его развил французский физик Огюстен Жан Френель (1788–1827). В 1814 году Френель обнаружил несомненные примеры интерференции и продолжил иметь дело с поперечными волнами, используя подробный математический анализ.

Чтобы понять, как поперечные волны объясняют поляризацию, представьте себе луч света, движущийся от вас, в котором волны пульсируют под правильным углом к линии движения, как и положено поперечным волнам. Допустим, волны света колеблются вверх и вниз. Однако они могут также колебаться вправо и влево, сохраняя при этом правильный угол к линии движения. Они могут даже колебаться по диагонали под любым углом, сохраняя при этом правильный угол к линии движения. Когда составляющие свет волны колеблются во всех возможных направлениях под правильным углом к движению и распределены по всем плоскостям поровну — это неполяризованный свет.

Давайте остановим внимание на двух видах колебания — вверх-вниз и влево-вправо. Все колебания, принимающие диагональные положения, можно разделить на вертикальную и горизонтальную составляющие (так же как вектор силы можно разделить на составляющие, между которыми будет прямой угол, см. ч. I). Следовательно, для простоты мы можем представить неполяризованный свет, как состоящий только из вертикальной и горизонтальной составляющих, где интенсивность обеих одинакова.

Возможно, вертикальная составляющая может пройти через прозрачную среду там, где не может пройти горизонтальная. По аналогии, допустим, вы держите конец веревки, вплетенной в изгородь. Если вы пустите по веревке вертикальную волну, она будет ходить вверх-вниз без помех; если же пустите по веревке волну горизонтальную, то волнообразные движения наткнутся на жерди изгороди и будут подавлены.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x