Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Давайте представим совершенно ровную, лишенную трения поверхность бесконечной протяженности. Мяч, по которому ударяет клюшка, будет вечно катиться по ровной прямой линии.

Но что, если покрытие неровно, если на нем есть кочки и ямки? Траектория мяча, прокатившегося по краю кочки, будет искривлена по направлению от центра ямки. Траектория мяча, прокатившегося по краю ямки, будет искривлена по направлению к центру ямки. Если ямки и кочки по какой-то причине невидимы и обнаружить их невозможно, то нас могут озадачить случайные отклонения шаров от прямолинейного движения. Мы может предположить, что существуют невидимые силы притяжения или отталкивания, толкающие шар туда и сюда.

Предположим, на такой лужайке есть конусообразная ямка с крутыми стенами. Тогда можно представить, что мяч для гольфа принимает замкнутую орбиту по стенкам этой воронки, как бобслей, бесконечно кружащийся по округлой насыпи. Если бы имелось трение, кружащийся шар терял бы кинетическую энергию и мало-помалу упал бы на дно воронки. В отсутствие трения он будет сохранять свою орбиту.

Эйнштейновское понятие о гравитации представляет очень похожую картину. Пространство-время имело бы здесь четырехмерную аналогию плоской лужайки, если бы оно было свободно от материи. Материя же, однако, производит «ямки»; чем более массивна материя, тем глубже «ямка». Земля движется вокруг Солнца, как будто она кружится по краю углубления. Если бы в космосе было трение, она бы медленно сдвигалась к центру «ямки» (то есть по спирали падала бы на Солнце).

В отсутствие трения она неопределенно долго сохраняет свою орбиту. Эллипс, по которому движется Земля, демонстрирует, что ее орбита по краю «углубления» не является совершенно ровной по плоскости четырехмерной площадки (иначе орбита была бы круговой). Небольшой наклон орбиты приводит к небольшой эллиптичности, а больший наклон — к большей эллиптичности. Именно эти «ямки», производимые присутствием материи, привели к понятию об искривленном пространстве.

Выводы из специальной теории относительности, например увеличение массы при движении и эквивалентность массы и энергии, были продемонстрированы без труда. Доказать же действительность общей теории оказалось гораздо труднее. Гравитация, рассматриваемая по Эйнштейну, производит результаты, столь похожие на ту гравитацию, какой ее видел Ньютон, что хочется посчитать обе теории равнозначными, а затем выбрать ту, что проще и больше соответствует «здравому смыслу», а это конечно же ньютоновская.

Однако есть области, где выводы из представлений Эйнштейна действительно несколько отличались от предполагаемых по теории Ньютона. Изучающий эти выводы должен будет выбирать между этими двумя теориями, найдя для этого более удовлетворительную причину, чем простота. Первая из таких областей касается планеты Меркурий.

Различные тела Солнечной системы, по представлениям Ньютона, движутся в соответствии с силами гравитации, которым они подвергаются. Каждое тело подвергается силе притяжения со стороны всех других тел во Вселенной, так что точно и полностью рассчитать движения любого тела вряд ли возможно. Однако в Солнечной системе сильнее всего воздействует гравитационное поле Солнца. Гравитационные поля нескольких других тел, находящихся близко к рассматриваемому телу, тоже имеют значение, но оно невелико.

Если учесть и их, то движение планет Солнечной системы может быть объяснено с достаточной степенью точности. Если, несмотря на это, все же существуют расхождения между рассчитанным и реальным движением, остается допустить, что имеется еще какое-то неучтенное гравитационное воздействие.

Например, присутствие расхождений в орбите Урана привело к поиску упущенного гравитационного воздействия и к открытию в середине XIX века планеты Нептун.

Во время открытия Нептуна изучалось также расхождение в движении Меркурия, ближайшей к Солнцу планеты. Как и другие планеты, Меркурий движется по эллиптической орбите вокруг Солнца, где Солнце находится в одном из фокусов эллипса. Это означает, что планета не всегда находится на одном расстоянии от Солнца. На его орбите есть точка, в которой он наиболее близок к Солнцу, — перигелий, и точка на противоположном конце орбиты, на которой он наиболее далек от Солнца, — афелий. Соединяющая их линия называется главной осью. Меркурий не повторяет своей орбиты в точности, но двигается таким образом, что орбита получается как бы в форме розетки, и главная ось эллипса медленно вращается.

Это могло бы быть объяснено влиянием гравитации ближайших к Меркурию планет, но не полностью. После того как были приняты во внимание все известные гравитационные воздействия, угол, на который действительно поворачивалась главная ось (и две ее крайние точки — перигелий и афелий), оставался чуть больше, чем должен был бы быть, — больше на 43,03 секунды за столетие. Это означало, что главная ось орбиты Меркурия делала полный — и необъяснимый — поворот за 3 000 000 лет.

Леверье, один из первооткрывателей Нептуна, предположил, что между Меркурием и Солнцем находится неоткрытая планета и что воздействие гравитации этой планеты на Меркурий могло привести к этому дополнительному движению перигелия. Однако планета так и не была обнаружена, и, даже если бы она существовала (или если бы пояс планетоидов равной массы существовал бы вблизи Солнца), гравитационное воздействие оказывалось бы также на Венеру, а этого не было обнаружено.

Ситуация оставалась загадочной еще семьдесят лет, пока Эйнштейн в 1915 году не объявил, что общая теория относительности изменила взгляд на гравитацию ровно настолько, чтобы ввести дополнительный фактор, который мог бы просчитать необъяснимую часть движения перигелия Меркурия. (Должно иметь место такое же, но гораздо более слабое воздействие на планеты, находящиеся дальше от Солнца, — слишком маленькое, чтобы его можно было точно определить.)

Эйнштейн также предсказал, что гравитация должна влиять на лучи света, что отсутствовало в ньютоновских воззрениях. Свет звезд, проходящий очень близко от Солнца, например, подвергался бы влиянию геометрии пространства и изгибался бы по направлению к центру Солнца. Наши глаза следовали бы за лучом света, мысленно продолжая его новое направление, и мы видели бы звезду дальше от центра Солнца, чем она находится на самом деле. Это воздействие очень мало. Даже если свет проходил у самого края Солнца, видимое положение звезды сдвигалось бы всего на 1,75 секунды, а если свет проходил дальше от Солнца, сдвиг положения звезды был бы еще меньше.

Конечно, свет звезд, проходящий около Солнца, нельзя наблюдать обычным путем, разве что на протяжении нескольких минут во время полного затмения. В то время, когда была опубликована общая теория, шла Первая мировая война и ничего нельзя было сделать. Однако в 1919 году война была окончена и можно было наблюдать полное затмение с острова Принцип в Гвинейском заливе у берегов Западной Африки. Под британским покровительством на остров была выслана исследовательская экспедиция со специальной целью — проверить общую теорию.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x