Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но с увеличением температуры меняется не только общее количество энергии. Природа испускаемых«волн тоже меняется, и это известно человеку. Для предметов с температурой батарей парового отопления, например (менее 400 °К), испускаемое излучение лежит в спектре низкочастотного инфракрасного. Ваша кожа поглощает инфракрасное излучение, и вы ощущаете его как тепло, но вы ничего не видите. Батарея в темной комнате не видна.

По мере повышения температуры предмета он не только излучает больше тепла, но и частота излучения тоже как-то меняется. К тому моменту, когда температура поднимается до 950 °К, тело уже достаточно излучает высоких частот, чтобы воздействовать на сетчатку и чтобы приобретать в наших глазах тусклый красный свет. По мере того как температура еще повышается, красный свет делается еще ярче и в конце концов становится оранжевым, потом — желтым, поскольку испускается все больше и больше света все более высоких частот.

При температуре 2000 °К предмет, уже ярко светящийся, все еще испускает много излучения в инфракрасном спектре. Только когда температура достигает 6000 °К, температуры поверхности Солнца, тогда большая часть испускаемого излучения лежит в видимой части спектра. (На самом деле, скорее всего, именно потому, что поверхность Солнца имеет определенную температуру, наши глаза и сформировались таким образом, чтобы быть чувствительными именно к этой части спектра.)

Вплоть до конца XIX века физики пытались измерить распределение излучения среди света различных частот на различных температурах. Для того чтобы сделать это точно, требовалось черное тело, поскольку только тогда можно было быть уверенным, что на каждой частоте излучается весь возможный при данной температуре свет. Для нечерного тела определенные частоты с большой долей вероятности должны были излучаться недостаточным образом; точное положение этих частот зависело от химической природы излучающего тела.

Поскольку ни одно существующее тело не поглощает всего света, падающего на него, то ни одно реальное тело не является полностью черным телом, что казалось серьезным затруднением на пути этого направления исследований. Однако в 90-х годах XIX века немецкий физик Вильгельм Вин (1864–1928) придумал оригинальный способ обойти это препятствие.

Представим себе поверхность с отверстием. Свет с любой длиной волны, попадая в это отверстие, упадет на грубую внутреннюю стену и будет большей частью поглощен. То, что не будет поглощено, будет рассеяно во всех направлениях, так что попадет на другие стены и будет поглощено там. При каждом контакте со стеной будет происходить дополнительное поглощение, и только крошечная часть света сможет отражаться достаточно долго, чтобы в конце концов снова отразиться из отверстия. Соответственно это отверстие будет выполнять роль совершенного поглотителя (в пределах разумного) и, следовательно, будет представлять собой черное тело. Если поверхность нагреть до определенной температуры и оставить таковой, то излучение, испускаемое из отверстия, будет являться излучением черного тела и распределение его частоты можно изучать.

В 1895 году Вьен произвел такое исследование и обнаружил, что при заданной температуре энергия излучалась на определенных частотах, увеличиваясь с возрастанием частоты и достигая максимума, а затем начинала уменьшаться, по мере того как частота поднималась еще выше.

Повышая температуру, Вьен обнаруживал, что на каждой частоте излучается больше энергии и что снова достигается максимум. Однако новый максимум был на большей частоте, чем предыдущий. Фактически, по мере того как он продолжал поднимать температуру, максимум частоты излучения продолжал двигаться в направлении все более и более высоких частот. Значение максимума частоты изменялось напрямую вместе с абсолютной температурой (T), так что закон Вьена можно выразить следующим образом:

V max= kT. (Уравнение 8.1)

где k — это константа отношения.

И закон Стефана, и закон Вьена очень важны для астрономии. Из природы спектра звезды можно узнать величину температуры ее поверхности. А из него можно получить представление о степени, в которой она излучает энергию, и, следовательно, о времени ее жизни. Чем горячее звезда, тем более короткой будет ее жизнь.

Из закона Вьена следует, что цвет звезд определяется их температурой (а не приближением или удалением их от нас, как предполагал Допплер, — см. гл. 5). Красноватые звезды сравнительно холодные, температура их поверхности 2000–3000 °К. Оранжевые звезды имеют температуру поверхности 3000–5000 °К, а желтые (такие, как наше Солнце) — 5000–8000 °К. Есть еще белые звезды, температура поверхности которых 8000–12 000 °К, а голубоватые звезды еще горячее.

Постоянная Планка

Тут возникает парадокс, поскольку остается загадкой, почему излучение черного тела должно распространяться именно так, как наблюдал Вьен. В 90-х годах XIX века физики считали, что излучающее тело случайным образом выбирает частоту, на которой излучает. Высокочастотное излучение предоставляет гораздо больший выбор, чем низкочастотное (так же как гораздо больше больших целых положительных чисел, чем малых), и, если бы излучение выбиралось случайным образом, гораздо чаще выбирались бы высокие частоты, чем низкие.

Лорд Рейлиф разработал уравнение, основанное на допущении, что все частоты могут быть излучаемыми с равной вероятностью. Он обнаружил, что количество энергии, излучаемой на определенном спектре частот, изменяется пропорционально четвертой степени частоты. Свет фиолетовой волны должен излучать в 16 раз больше энергии, чем свет красной волны, а в ультрафиолете должно излучаться еще больше. Фактически, по формуле Рейлифа, почти вся энергия излучающего тела будет излучаться очень быстро в глубоком ультрафиолете. Некоторые называли это «фиолетовой катастрофой».

Однако самым интересным касательно фиолетовой катастрофы стало то, что ее так и не произошло. Если быть точным, на самых низких частотах уравнение Рейлифа соответствовало истине и количество излучения быстро возрастало. Но вскоре количество излучения начало быстро падать по отношению к ожидаемому. Оно достигло максимума на некоей средней частоте, хотя этот максимум и был гораздо ниже ожидаемого по уравнению Рейлифа, а затем на еще более высоких частотах количество излучения начало быстро уменьшаться, в то время как формула Рейлифа прогнозировала постоянное увеличение.

С другой стороны, Вьен разработал уравнение, которое должно было отражать то, что действительно наблюдалось на высоких частотах. К сожалению, оно не совпадало с реальностью на низких частотах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x