Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
где ½mv 2— кинетическая энергия испускаемого электрона; hν (постоянная Планка на частоту) — энергетическое содержимое кванта, поглощаемого поверхностью; а w — энергия, требуемая для того, чтобы электрон оторвался от поверхности. На пороговой частоте электроны только-только могут отрываться и обладать кинетической энергией не будут. По этой причине уравнение 8.3 примет вид 0 = hν — w; а это будет означать, что hν = w. Другими словами, w будет представлять энергию светового кванта на пороговой частоте.
Предложенное Эйнштейном объяснение фотоэлектрического эффекта было таким элегантным и так хорошо соответствовало наблюдениям, что квантовая теория внезапно обрела популярность. Изначально она была разработана для того, чтобы объяснять факты излучения, а теперь внезапно оказалось, что она без изменений может объяснять фотоэлектрический эффект — совершенно иное явление. Это больше всего впечатляло.
Еще большее впечатление это произвело в 1916 году, когда американский физик Роберт Эндрус Милликен (1868–1953) провел тщательные эксперименты, в ходе которых измерил энергию электронов, испускаемых светом различных частот, и обнаружил, что энергии, которые он измерял, в точности соответствовали уравнениям Эйнштейна. Более того, измеряя энергию электронов (½mv 2), частоту используемого света (ν) и пороговую частоту для используемой поверхности (w), он смог вывести значение h (постоянной Планка) из уравнения 8.3. Он получил значение, очень близкое к тому, которое получил Планк в своем уравнении излучения.
С 1916 года квантовая теория получила среди физиков всеобщее признание. Теперь стало принято считать, что энергия может излучаться и поглощаться только целым числом квантов и фактически что вся энергия во всех своих формах «квантизирована», то есть может рассматриваться только как состоящая из неделимых квантов. В дальнейшем из этой концепции был выдвинут самый полезный взгляд на строение атома, как мы увидим в III части этой книги.
Фотоны
Эйнштейн довел понятие квантов до логического завершения. Квант казался аналогичным «атому энергии», или «частице энергии», поэтому почему бы не посчитать такие частицы именно частицами? Тогда свет будет состоять из частиц, которые в конце концов назвали фотонами (от греческого слова, означающего «свет»).
Это представление повергло физиков в шок. Волновая теория света установилась всего за 100 лет до этого и на протяжении столетия одерживали победу за победой, пока теория частиц Ньютона не была похоронена и предана полному забвению. Если же свет в конце концов состоял из частиц, то что же делать со всеми свидетельствами, которые неопровержимо говорили о его волновой природе? Что же теперь делать с экспериментами интерференции, поляризации и т. д.?
Ответ не имеет с этим ничего общего. Просто неверно считать, что объект может быть или частицей, или волной. Совершенно так же можно спорить и о том, что или мы находимся вверх головой, а австралийцы вниз головой, или мы вниз головой, а австралийцы — вверх. Фотон является и частицей, и волной в зависимости от точки зрения. (Некоторые физики полушутя говорят о «волночастицах».) Фактически можно выйти за рамки этого противопоставления (как я объясню в дальнейшем, в III части этой книги) и настаивать на том, что все фундаментальные единицы Вселенной одновременно являются и волнами, и частицами.
Трудно принять подобное утверждение, потому что почти неизбежно возникает вопрос: «Но как один и тот же объект может быть одновременно и волной и частицей?»
Проблема здесь в том, что мы автоматически рассуждаем о незнакомых объектах как о знакомых; мы описываем новые явления, говоря «атом похож на бильярдный шар», или «световые волны — это как волны на воде». Но на самом деле это значит только, что некоторые конкретные свойства атомов или световых волн напоминают аналогичные свойства бильярдных шаров или волн на воде. Не все свойства соответствуют: атом не такой большой, как бильярдный шар; световая волна не такая мокрая, как волна на воде.
У бильярдного шара есть свойства и волны, и частицы. Однако свойства частицы в нем так очевидны, а свойства волны так неприметны и неопределимы, что мы думаем о бильярдном шаре только как о частице. Волны на воде тоже имеют свойства и волны, и частицы, но именно свойства волны очевидны, а свойства частицы незаметны. Фактически все обычные предметы чрезвычайно разбалансированы в этом отношении, поэтому мы и пришли к выводу, что предмет может быть либо частицей, либо волной.
Фотоны же, из которых состоит свет, лучше уравновешены в этом отношении. В них очевидны и свойства волны, и свойства частицы. В нашем повседневном опыте сравнить их не с чем. Однако только из-за того, что мы не имеем знакомого аналога, мы не должны считать, что волночастица «противоречит здравому смыслу» или является парадоксом или, что хуже того, «ученые не смогли прийти к решению».
Мы увидим это яснее, если выберем не прямую аналогию. Представьте себе конус из твердого вещества, например из стали. Если перевернуть такой конус, выровняв его основание по линии горизонта, он покажется треугольным. Держа его таким образом, его можно пронести сквозь треугольное отверстие в стальном листе, но не сквозь круглое отверстие такой же площади.
Представим, что конус повернули острием к глазу. Теперь его граница кажется круглой. В этой ориентации он пройдет через круглое отверстие в стальном листе, но не сквозь треугольное отверстие такой же площади.
Если два наблюдателя, знакомые с двумерной плоскостной геометрией, но не с трехмерной объемной геометрией, проведут такие эксперименты, один будет с жаром настаивать, что конус треугольный, поскольку проходит сквозь треугольное отверстие, а другой будет утверждать с таким же пылом, что конус круглый, потому что проходит сквозь круглое отверстие. Они будут спорить целую вечность и не придут к выводу.
Если этим двум наблюдателям сказать, что они оба частью правы, а частью не правы и что объект их спора имеет свойства как треугольника, так и круга, их первой реакцией (в основе которой будет лежать двухмерный опыт) будет ярость — как это предмет может быть одновременно и кругом, и треугольником?
Однако конус не то чтобы являлся и кругом, и треугольником, но он имеет как круглое, так и треугольное сечения, а это означает, что часть его свойств — свойства круга, а часть — свойства треугольника.
Таким же образом фотоны в каких-то аспектах имеют свойства волны, а в каких-то — свойства частицы. Волнообразные свойства их, так красиво продемонстрированные в XIX веке, были результатом экспериментов, нацеленных на то, чтобы обнаружить волновой аспект света (как в случае правильного расположения конуса для того, чтобы показать, что он треугольный).
Читать дальшеИнтервал:
Закладка: