Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Частицеобразные свойства оказалось не так легко продемонстрировать. Точнее говоря, в 1901 году русский физик Петр Николаевич Лебедев (1866–1911) показал, что свет оказывает очень малое давление. Зеркало, подвешенное в вакууме на тонкой нити, реагировало на это давление, поворачиваясь и перекручивая нить. Это давление оказалось возможным измерить по небольшому закручиванию нити, происходившему в тот момент, когда луч света попадал на зеркало.

В некоторых условиях, как показал Лебедев, давление излучения оказывается более сильным, чем гравитация. Замерзшие газы, составляющие поверхность кометы, испаряются, когда комета приближается к Солнцу, и частички пыли, обычно удерживающиеся на месте замерзшим газом, освобождаются. На эти частички действуют как незначительная сила притяжения кометы, так и давление огромного солнечного излучения. Необычно большое давление излучения сильнее, чем необычно малая гравитация, и частички пыли частично сдуваются излучением, которое распространяется по всем направлениям от Солнца.

Именно так и появляется хвост кометы, состоящий из света, отраженного от этих пылинок, и всегда направленный от Солнца. Так, если комета отдаляется от Солнца, хвост движется впереди нее. Эта ориентация хвоста кометы заставила немецкого астронома Иоганна Кеплера заявить о давлении излучения за три века до того, как его существование было продемонстрировано в лаборатории.

Существование давления излучения может, как правило, служить примером частицеобразных свойств света, если мы посчитаем это давление результатом бомбардировки частицами, как давление газа (см. ч. 1). Однако в 1873 году Максвелл (который тоже работал над кинетической теорией газов) показал, что есть хорошие теоретические аргументы в пользу того факта, что световые волны могут оказывать давление излучения и как волны, а не как частицы.

Более чистый пример частицеобразных свойств был показан в 1922 году американским физиком Артуром Холли Комптоном (1892–1962). Он обнаружил, что, проникая в вещество, рентгеновский луч (это очень высокочастотная форма света, более подробно она будет обсуждаться в III томе этой книги) иногда ударял электроны и не только оказывал таким образом давление, но и сам преломлялся! При преломлении частота его несколько возрастала, а это означало, что рентгеновский луч терял энергию.

С другой стороны, электрон отскакивал в таком направлении, которое высчитывалось из преломления рентгеновского луча, и приобретал ровно столько энергии, сколько луч терял. Это преломление и переход энергии были полностью аналогичны тому, что случилось бы, если бы электрон столкнулся с электроном или, возвращаясь к сказанному, если бы бильярдный шар столкнулся с бильярдным шаром. Этот эффект Комптона наглядно продемонстрировал, что фотон рентгеновского луча может действовать как частица.

Были хорошие причины полагать, что чем более энергичен фотон, тем более очевидными становятся его частицеобразные свойства по сравнению с волнообразными. Следовательно, эффект Комптона легче было продемонстрировать на фотоне рентгеновского луча, чем на менее энергетичных фотонах видимого света, но результат его относится ко всем фотонам. Частицеволновая природа фотонов с тех пор не подвергалась сомнению.

В то время как некоторые эксперименты освещали волнообразные свойства света, а некоторые — частицеобразные, даже не планировался эксперимент, который показал бы, что свет ведет себя одновременно и как волна, и как частица (таким же образом, конус может быть сориентирован и так, чтобы проходить сквозь треугольник, и так, чтобы проходить сквозь круг, но не так, чтобы проходить через оба отверстия). Датский физик Нильс Бор (1865–1962) установил, что придумать эксперимент, в котором свет вел бы себя одновременно и как волна, и как частица, просто невозможно в принципе. Его назвали принципом дополнительности.

Это не так страшно для ученых, как звучит. Мы привыкли определять общую форму трехмерного тела, изучая его сначала с одной стороны, затем с другой, а потом объединяя в воображении собранную таким образом информацию. Мы не стремимся видеть предмет со всех сторон одновременно и не думаем, что, только глядя со всех сторон одновременно, можно понять истинную форму предмета. Фактически, если бы мы могли его видеть со всех сторон, мы получили бы замешательство вместо просветления, как когда мы видим портрет работы Пикассо, на котором женщина нарисована одновременно и в профиль, и анфас.

Если рассматривать свет как имеющий свойства и частицы, и волны, то действительно отпадает нужда в светоносном эфире, так же как не нужен нам эфир ни для объяснения гравитации, ни в качестве мерила абсолютного движения.

Сколько бы свойств волны ни демонстрировал свет, его перемещение в вакууме делает очевидными его частицеобразные свойства. Фотоны летят сквозь бесконечные толщи вакуума точно так же, как, по описанию Ньютона, должны были лететь его менее сложные частицы.

Следовательно, когда релятивизм и квантовая теория стали общепринятыми, скажем к 1920 году, — физики перестали думать об эфире.

Но даже если считать свет состоящим из фотонов, это не отменяет того факта, что фотоны имеют волновой аспект — что-то все же колеблется. Так что же колеблется и является ли это что-то материальным?

Чтобы дать ответ на этот вопрос, давайте вспомним два явления, которые с древних времен были примерами того, что казалось воздействием на расстоянии. На это у нас уйдет несколько глав, но ответ в конце концов будет дан.

Глава 9.

МАГНЕТИЗМ

Магнитные полюса

Силы притяжения между телами, несомненно, наблюдались с доисторических времен, но (по крайней мере, так принято считать) первым из древних греков, кто систематически принялся за изучение сил притяжения, был Талес (640? — 546 до н.э.).

Одна из таких сил притяжения касалась железа и железной руды. Некоторые встречающиеся в природе виды железной руды (магнитный железняк), как обнаружилось, притягивали железо и, как могли заметить древние, больше ничего. Талес жил в городе Милет (на побережье Эгейского моря, ныне в Турции), и те образцы магнитного железняка, которые он изучал, предположительно были из окрестностей соседнего города Магнезии. Талес назвал его «магнезианским камнем», а притягивающие железо материалы получили соответственно название магниты, поскольку само явление получило название магнетизм.

Талес обнаружил, что янтарь (окаменевшая смола, которую греки называли «электрон»), если его натереть, тоже излучает силу притягивания. Она отличалась от магнетической силы, поскольку магнетизм действовал только на железо, а натертый янтарь — на любой легкий предмет: пух, перья, куски сухих листьев. В поздние века были найдены и другие, кроме янтаря, предметы, которые, будучи натертыми, проявляли подобные свойства, и в 1600 году английский физик и врач Уильям Гильберт (1540–1603) предположил, что все такие объекты можно называть «электрическими» (от греческого слова, означавшего «янтарь»). Отсюда и стало к этому явлению применяться слово «электричество».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x