Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Это закон Ома. Из этой формулы, путем перестановки данных, закон Ома может быть записан как I = E/R и Е = IR.
Сопротивление изменяется, как нетрудно догадаться, в омах, то есть проводник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока равна 1 А. Из уравнения 11.1 мы видим, что 1 Ом можно представить как 1 В на 1 А.
В некоторых случаях удобнее рассматривать электрическую проводимость материала, чем сопротивление. Электрическая проводимость — величина, обратная сопротивлению. Единица измерения электропроводимости была представлена (по причуде ученых) как Мо, то есть Ом наоборот.
Проводник с сопротивлением 1 Ом имеет электропроводимость 1/ 1или 1 Мо. Сопротивление, равное 3 Ом, соответствует электропроводимости 1/ 3Мо, сопротивление, равное 100 Ом, соответствует электропроводимости 1/ 100Мо и т. д. Если представить электропроводимость как С, то из уравнения 11.1 получаем:
Таким образом, 1 Мо — то же самое, что 1 А на 1 В.
При любых условиях сопротивление зависит от длины и диаметра проводника (кроме других параметров). В целом сопротивление изменяется прямо пропорционально длине (L) и обратно пропорционально площади поперечного сечения (А) проводника. Таким образом, сопротивление пропорционально зависимости L/A. Если представить эту зависимость как постоянную ρ (греческая буква «ро»), то можно сказать, что
где ρ — удельное сопротивление. Каждое вещество имеет собственное удельное сопротивление.
Преобразовав уравнение 11.3 для нахождения удельного сопротивления, мы получим
В системе МКС единица измерения R — Ом, А — квадратный метр (м 2), a L — метр. Единица измерения ρ соответственно Ом-квадратные метры на метр, или, сократив уравнение, ом-метры.
Чем лучше проводник, тем ниже сопротивляемость. Самым лучшим из известных проводников является серебро, которое про температуре 0 °C имеет сопротивляемость около 0,00000000152, или 1,52∙10 –12ом∙м. Медь достаточно близка к нему — 0,0000000154, далее идут золото и алюминий с сопротивляемостью, равной соответственно 0,0000000227 и 0,0000000263 Ом∙м. В целом металлы имеют низкую сопротивляемость и, как следствие, являются отличными проводниками.
Даже сопротивляемость нихрома, сплава никеля, железа и хрома, составляющая всего лишь 0,000001 Ом∙м, считается необычно высокой для металлов. Сопротивляемость металлов так мала потому, что их атомная структура такова, что каждый атом имеет один или два свободно движущихся, удаленных от ядра электрона. Поэтому заряд может легко переходить от атома к атому с этими электронами [102] Движение электронов — это не то же самое, что электрический ток. Электроны движутся с определенной не очень высокой скоростью, но сила, приводящая их в движение, движется гораздо быстрее. Если выстроить шашки в ряд и щелкнуть еще по одной шашке так, чтобы она ударилась об этот ряд с одного края, то она ударится о ряд шашек и остановится (может быть, даже слегка отскочит). Шашки, в которые она ударится, останутся приблизительно на своем месте, но крайняя шашка с другой стороны отскочит, продолжая движение шашки, по которой щелкнули. Сами шашки почти не двигались, но момент силы передался по лилии шашек со скоростью, которая зависит от эластичности материала, из которого эти шашки сделаны. Таким же образом, независимо от реальной скорости электронов, электрическая сила передается сквозь любое вещество со скоростью света.
.
Вещества, электроны в атомах которых прочно «присоединены» к ядру, обладают очень высокой сопротивляемостью. Даже при огромных разностях потенциалов в них может возникнуть ток лишь очень небольшой силы. Вещества, обладающие сопротивляемостью свыше миллиона ом-метров, вообще не способны проводить ток. Древесина клена имеет сопротивляемость 300 млн. Ом∙м, стекло — около триллиона, сера — около квадриллиона, а кварц — около 500 квадриллионов Ом∙м.
Помимо проводников, сопротивляемость которых очень низка, и изоляторов, сопротивляемость которых очень высока, существует группа веществ, которые характеризует сопротивляемость средней силы, выше, чем у нихрома, но ниже, чем у древесины. Наиболее известные примеры — элементы германий и кремний. Сопротивляемость германия — 2 Ом∙м при 0 °С, а кремния — 30 000. Такие вещества, как германий и кремний, называют полупроводниками.
Обратите внимание, что вышеприведенные значения сопротивляемости верны для температуры 0 °C. Эти значения меняются с возрастанием температуры у металлов в сторону возрастания. Так, электроны, двигаясь сквозь проводник, обязательно встречают атомы вещества, которые преградят им движение, и некоторая часть электрической энергии потеряется при преодолении препятствий. Эта потеря энергии происходит из-за сопротивляемости вещества. Если температура проводника возрастает, то атомы проводника вибрируют быстрее (см. ч. I), и электронам становится труднее проходить; следовательно, сопротивляемость увеличивается. (Сравните, к примеру, свои собственные ощущения: насколько легче продираться сквозь толпу спокойно стоящих людей, чем через толпу, где все снуют туда-сюда.)
Если известна сопротивляемость при 0 °С (ρ 0), то она увеличивается на некоторую часть этой величины (ρ 0αt) с каждым градусом повышения температуры (t). Следовательно, увеличение сопротивляемости для каждой заданной температуры — ρ 0αt. Общая сопротивляемость при этой температуре (ρ t), следовательно, равняется сопротивляемости при 0 °C плюс увеличение, или:
Постоянная α, показывающая увеличение сопротивляемости при каждом градусе, называется температурным коэффициентом сопротивляемости.
Пока температурный коэффициент сопротивляемости остается неизменным, реальное сопротивление отдельного проводника изменяется по мере изменения температуры очень простым образом. Соответственно сопротивление тугоплавких металлов заданных размеров позволяет добиваться больших температур.
Что касается полупроводников, температурный коэффициент сопротивляемости для них отрицательный, то есть их сопротивляемость уменьшается с увеличением температуры. Причиной этому является то, что при повышении температуры материала жесткость удержания электронов в атоме ослабевает; большее количество электронов получает возможность двигаться и переносить заряд. Возросшее количество доступных электронов преодолевает дополнительное сопротивление, производимое активнее вибрирующими атомами, поэтому общая сопротивляемость падает.
Читать дальшеИнтервал:
Закладка: