Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Основная сложность здесь заключалась в том, что не все атомы свинца, содержащиеся в породе, образовались в результате распада урана или тория, ведь их произвольная часть могла присутствовать в породе в момент застывания наравне с ураном и торием. Такой примордиальный свинец не имеет никакого отношения к распаду урана и тория и приводит к появлению серьезных ошибок при расчетах.
Проблему удалось обойти, определив с помощью масс-спектрографа относительное содержание свинца в нерадиоактивной породе. Выяснилось, что этот свинец состоит из четырех стабильных изотопов свинца с массовыми числами 204, 206, 207 и 208, причем свинец–204 достигает 1,48% ( 1/ 67,5) от общей массы.
К счастью, свинец–204 не является конечным продуктом ни одного из радиоактивных рядов, значит, на его содержание радиоактивность не влияет. Теперь, если определить содержание в радиоактивной породе свинца–204 и умножить это число на 67,5, то полученное значение будет являться общим количеством присутствующего в породе примордиального свинца. Все, что свыше, является свинцом, образовавшимся в процессе радиоактивного распада.
По соотношению урана/свинца (и учитывая содержание свинца–204) удалось обнаружить застывшие породы, возраст которых более 4 000 000 000. Это является лучшим доказательством того, что Земля образовалась миллиарды лет назад.
Конечно же уран и торий далеко не самые распространенные элементы, и породы с достаточным для точного определения возраста содержанием урана и тория можно обнаружить только в строго определенных местах. Однако определять возраст можно и по рубидию–87, и по калию–40. Оба этих элемента обладают длительным периодом полураспада и в природе встречаются гораздо чаше, нежели уран и торий. В случае с рубидием–87 определяется соотношение рубидий/стронций, так как стронций–87 является конечным продуктом распада рубидия–87. (Количество примордиального стронция определить невозможно, так как другие изотопы стронция, присутствующее в породе, в процессе радиоактивного распада не образуются.) Ученым удалось найти содержащие рубидий минералы, застывшие более 4 000 000 000 лет назад.
С калием–40 не все так просто. В большинстве случаев калий–40 распадается до кальция–40, но содержание кальция–40 в земной коре слишком высоко, чтобы отличить кальций–40, образовавшийся в процессе радиоактивного распада, от примордиального кальция–40. Однако определенное количество кальция–40 путем К-захвата превращается в аргон–40 (ниже).
Аргон — один из содержащихся в атмосфере благородных газов. Все эти газы, за исключением аргона–40, встречаются на Земле в исчезающе малых количествах. Возможно, что за заре своей истории Земля могла удерживать лишь твердые химические соединения, в то время как газообразные вещества просто «улетали», либо из-за малой массы, либо из-за высокой температуры планеты. А благородные газы как раз и не образуют никаких химических соединений.
С другой стороны, аргон–40 составляет около 1% атмосферы. Это значит, что аргон–40 образовался уже после того, как масса и температура Земли приблизились к современному значению (то есть когда у Земли появилась способность удерживать благородные газы). Скорее всего, аргон–40 появился в процессе распада калия-40. Если подсчитать, сколько времени для этого понадобилось, то получится, что Земля в ее современном облике существует уже не менее 4 000 000 000 лет.
Итак, различные методы вычисления возраста дают одну и ту же цифру, которая и является общепринятой на сегодняшний день.
Ядерные реакции
Пока атом считался неделимой частицей, было ясно, что его структуру невозможно изменить в лабораторных условиях за отсутствием таковой. Однако как только обнаружилось, что атом состоит из огромного количества упорядоченных субатомных частиц, у ученых зародилась мысль о том, что этот порядок можно каким-либо образом изменить.
Порядок электронов внешних оболочек атомов изменить довольно просто. Для этого достаточно заставить атомы и молекулы сталкиваться между собой, что ученым удалось сделать еще в XIX веке, подвергая атомы и молекулы нагреванию. Здесь безраздельно правили химики: обычные химические реакции происходят именно за счет перераспределения электронов.
А можно ли перестроить структуру самого ядра? Столь фундаментальная перестройка атома элемента приведет к его превращению в атом другого элемента.
Для того чтобы при столкновении двух атомов их ядра соприкоснулись, преодолев «подушку» из электронов, нужно подвергнуть эти атомы нагреванию до чрезвычайно высокой температуры. К счастью, в XX веке был найден способ обойтись и без высоких температур. Радиоактивные элементы испускают субатомные частицы и при комнатной температуре. Одна из таких частиц — альфа-частица — как раз и является «голым» атомным ядром (атома гелия).
Конечно же направить альфа-частицу в определенное атомное ядро невозможно, но с точки зрения статистики из достаточно большого количества альфа-частиц хотя бы несколько попадут в ядра. Исследуя такие столкновения и «почти» столкновения, Резерфорд и разработал концепцию атома с атомным ядром и рассчитал размер ядра (см. гл. 4).
С другой стороны, столкновения, в результате которых атом и альфа-частица лишь отклоняются или отталкиваются друг от друга, не приводят к изменениям ни того ни другого.
Здесь нужно нечто большее. После серии экспериментов, результаты которых были опубликованы в 1919 году, Резерфорд доказал, что иногда это «нечто большее» все-таки происходит. В начале своих опытов Резерфорд поместил источник альфа-частиц в закрытый цилиндр, один конец которого был покрыт слоем сульфида цинка.
Когда альфа-частица ударяется о сульфид цинка, возникает вспышка люминесценции, или сцинтилляция (мерцание). Это происходит потому, что за счет кинетической энергии альфа-частицы происходит возбуждение молекулы цинка, а возвращаясь в свое прежнее состояние, молекула испускает фотон видимого света. (Впервые это явление наблюдал Беккерель в 1899 году. Позже такой способ стали применять при производстве светящихся объектов. Смесь небольшого количества соединения радия с сульфидом цинка или некоторых других веществ дает свечение, легко заметное в темноте. Самым «писком» 1920-х годов стали часы, на циферблатах которых цифры были нанесены такими вот люминесцентными материалами.)
Если рассматривать мерцающий экран в темноте (когда глаза привыкли к темноте и легко замечают даже слабый свет) с помощью лупы, то можно увидеть каждую вспышку в отдельности. Учитывая, что каждая вспышка вызвана попавшей в экран альфа-частицей, то, подсчитав количество вспышек в заданной области за определенное время, можно определить скорость распада некоторой массы радиоактивного вещества и с помощью этого выяснить, например, период полураспада данного вещества. Прибор, который Резерфорд использовал в своих экспериментах, получил название сцинтилляционный счетчик.
Читать дальшеИнтервал:
Закладка: