Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
l = 1,99∙10 –16/e. (Уравнение 9.6)

Теперь, если мы подставим 1,6∙10 –12эрг (один электрон вольт) вместо e в формуле 9.6, то получим 1,24∙10 –4сантиметров. Другими словами, излучение длиной 1,24 микрона (инфракрасный спектр) состоит из протонов, энергия которых 1 эв.

Таким образом, 1 Кэв — это энергия излучения, длина волны которого в 1000 раз больше 1 эв, т. е. 1,24 миллимикрона, или 12,4 ангстрема. Это уже диапазон рентгеновского излучения. Точно так же 1 Мэв — это энергия излучения, длина волны которого 0,0124 ангстрема (диапазон гамма-лучей).

По формуле 9.6, запас энергии видимого света колеблется от 1,6 эв для красной части спектра и 3,2 эв для фиолетовой. Видимый свет и ультрафиолетовое излучение поглощаются и испускаются во время обычных химических реакций. Таким образом, во время обычных химических реакций используется энергия не более 1–5 эв. Основная сложность проведения ядерных реакций заключается в том, что для таких реакций энергии нужно гораздо больше — тысячи, даже миллионы электронвольт.

Ускорители частиц

Устройства, испускающие субатомные частицы с уровнем энергии в несколько килоэлектронвольт и выше, получили названия ускорителей элементарных частиц. Так как такие частицы используются для разрушения атомных ядер и возбуждения ядерных реакций, то устройства также называли ускорителями ядерных частиц, но сейчас этот термин практически вышел из моды.

Первый удачный ускоритель частиц, адаптированный под ускорение протонов, был сконструирован английским физиком Джоном Кокрофтом (1897–1967) и его ирландским коллегой Эрнестом Уолтоном (1903–1995) в 1929 году.

Протоны в ядерных реакциях использовать удобнее, чем альфа-частицы, так как они обладают меньшим зарядом и поэтому меньше подвержены силам отталкивания ядра.

Кроме того, протоны являются ионизированными атомами водорода (Н +), в то время как альфа-частицы являются ионизированными атомами гелия (Не ++), а водород гораздо легче ионизируется.

В ускорителе Кокрофта — Уолтона для получения огромного электрического, заряда и ускорения протонов до 380 Кэв применялся умножитель напряжения (связка из нескольких конденсаторов).

В 1931 году ученые смогли настолько ускорить частицы, что им удалось разрушить ядро атома лития:

3Li 7+ 1H 1→ 2He 4+ 2He 4. (Уравнение 9.7)

Это была первая полностью искусственная реакция, так как даже применявшиеся при ее проведении бомбардирующие частицы были получены искусственно.

В том же 1931 году были созданы еще три типа ускорителей частиц.

Американский физик Роберт Ван-де-Грааф (1901–1967) построил механизм, внешне напоминавший половину гантели, поставленную на пол. Внутри находился «конвейер», переносивший положительный заряд в верхнюю часть, а отрицательный — в нижнюю, создавая огромный разноименный электростатический заряд. Благодаря значительной разности потенциалов с помощью такого электростатического генератора можно было разгонять частицы до 1,5 Мэв, а впоследствии и до 18 Мэв.

Ускорители последующего типа состояли из нескольких раздельных труб. Такое устройство давало возможность «толкать» частицы в несколько приемов, а не одним мощным «пинком». Проходя по трубе, частица получала дополнительную энергию и скорость. Так как «толчки» осуществлялись через одинаковые периоды времени, то расстояние, которое частица проходила между «толчками», становилось все больше и больше, и каждая последующая труба должна была быть все длиннее и длиннее. Поэтому очень скоро линейный ускоритель стал слишком длинным и неудобным.

Эрнест Орландо Лоуренс (1901–1958) предложил схему самого компактного ускорителя. В его устройстве частицы перемещались не по прямой, а по кривой траектории, благодаря чему и удалось сэкономить место.

В центре закрытого плоского круглого сосуда помещается высокотемпературная спираль, ионизирующая водород для образования протонов. Противоположные части сосуда находятся под высоким напряжением, которое и ускоряет протоны. Находящиеся над и под сосудом магниты заставляют протоны двигаться по криволинейной траектории.

Двигающиеся по такой криволинейной траектории протоны в конце концов попадут в зону положительного заряда и начнут тормозиться. Однако сосуд находится под переменным током, и анод с катодом «меняются местами» с тщательно подобранной частотой.

Всякий раз, когда протоны, казалось бы, двигаются к аноду, тот становится катодом и протоны продолжают ускоряться. (Как будто борзая гонится за электрическим кроликом, который всегда остается впереди.)

По мере ускорения скорость протонов растет, и они делают обороты внутри сосуда все быстрее и быстрее. А часть переменного электрического поля остается прежней постоянной величиной. Происходит рассинхронизация, и протоны окажутся под действием отталкивающей силы анода, который не успел вовремя стать катодом, что приведет к торможению протонов. (Борзая прибавила скорости и догнала электрического зайца.)

К счастью, по мере ускорения траектория протонов под действием магнитного поля становится менее криволинейной, и они начинают описывать большие круги. Их большая скорость просто-напросто компенсируется большим расстоянием, которое они проходят. Поэтому они продолжают передвигаться из одной половины в другую в соответствии с частотой электрического тока, постепенно все больше и больше удаляясь от центра сосуда. В конце концов они вылетают из него 9 виде потока частиц большой энергии.

Линейный ускоритель частиц Лоуренс назвал свой ускоритель циклотроном Даже - фото 84
Линейный ускоритель частиц

Лоуренс назвал свой ускоритель циклотроном. Даже самая первая тестовая модель циклотрона — не более 25 сантиметров в диаметре — позволяла ускорять частицы до 80 Кэв. На протяжении последующих 10 лет строились все более крупные циклотроны, позволявшие ускорять частицы до 10 Мэв и более.

Идеального соответствия между движением частицы и частотой электрического тока можно добиться только при условии, что масса частицы не меняется. Это удается при нормальных условиях, однако в процессе ускорения скорость движения частиц начинает приближаться к скорости света. Согласно теории относительности (см. ч. II), в этом случае скорость частицы начинает расти очень и очень медленно (скорость движения частицы ни в коем случае не может быть выше скорости света), в то время как рост массы частицы все ускоряется и ускоряется.

Чем больше масса частицы, тем больше времени она затрачивает на один полуоборот и синхронизацию между движением частицы и частотой переменного тока. Это ограничивает максимальную скорость ускорения протона, и еще до Второй мировой войны эта максимальная скорость была достигнута.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x