Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
или
Углерод–14 является радиоактивным изотопом с неожиданно длинным периодом полураспада — более 5770 лет. А учитывая сравнительно небольшую продолжительность любого лабораторного эксперимента, его радиоактивность можно считать постоянной. Меченные углеродом–14 химические соединения можно использовать в огромном количестве биологических и биохимических экспериментов, и углерод–14, несомненно, является самым пригодным для этих целей радиоизотопом.
В 1946 году американский химик Уиллард Либби (1908–1980) предположил, что углерод–14 должен существовать в природе как результат реакции в присутствующем в атмосфере азоте–14, косвенно вызванной космическими излучениями высокой энергии [136] Эти излучений называются космическими лугами. Мы рассмотрим их ниже.
. Реакция, по сути, является присоединением нейтрона и потерей протона. В результате такой (α, p)-реакции уменьшается лишь атомное число, массовое число остается неизменным. Таким образом:
или
Углерод–14 образуется постоянно и после образования разрушается. Между этими двумя процессами существует определенный баланс, и концентрация углерода–14 в атмосфере (углерод–14 входит в состав углекислого газа) постоянна, хотя и очень мала.
Позже Либби предположил, что, так как растения постоянно поглощают и используют углекислый газ, в их тканях должен содержаться углерод–14 постоянно, хотя и в очень малой концентрации. Углерод–14 должен содержаться и в тканях животных, так как животные питаются растениями (или травоядными животными).
Однако постоянство концентрации поддерживается, только пока ткань жива, так как только в этом случае ткани непрерывно впитывают радиоактивный углерод (путем поглощения атмосферного углекислого газа или переваривания пищи). Как только организм погибает, поглощение углерода–14 прекращается, а уже имеющееся его количество начинает равномерно уменьшаться.
Все, что когда-то было частью живого организма, можно проанализировать на предмет количества углерода–14 и таким образом определить, сколько времени прошло с момента гибели организма. Такой метоп, радиоактивного датирования широко применяется в археологии. С его помощью удалось определить возраст дерева, найденного в древней египетской гробнице (около 4800 лет), и дерева, найденного в древней этрусской гробнице (около 2730 лет). Таким же образом был определен возраст Библии.
Можно определить возраст древних деревьев, сваленных наступающими ледниками, а также возраст деревьев, прибитых к берегам, образованным тающими ледниками. Ученые были удивлены, когда обнаружили, что ледовые щиты, покрывавшие Северную Америку, последний раз наступали всего лишь 25 000 лет назад и достигли максимальной площади 18 000 лет назад. 10 000 лет назад отступающие ледники вновь начали наступать и окончательно исчезли из района Великих озер лишь в 6000 году до н.э. (когда начали зарождаться первые цивилизации).
( α, p)-реакция, приведшая к обнаружению углерода–14, еще раньше привела к открытию единственного радиоизотопа водорода. В 1934 году австрийский физик Маркус Олифант (1901–2000) бомбардировал газообразный дейтерий дейтронами. То есть ядра тяжелого водорода (Н 2) были одновременно и ядрами-мишенями, и бомбардирующими частицами:
или
У образующегося в результате такой реакции водорода–3 неожиданно длинный период полураспада — 12,26 года. Он получил название тритий (от греч. «три»). Тритий также образуется в атмосфере под действием излучений высокой энергии и в крайне малой концентрации присутствует в обычной воде. В особых случаях радиоактивное датирование идет по тритию.
Единицы радиоактивности
При использовании радиоизотопов важно знать не только их массу, но и скорость распада, так как именно она определяет количество излучаемых частиц на единицу массы, и именно эти частицы нужно обнаружить.
Скорость распада (R b) радиоизотопа можно выразить следующим образом:
где N — общее количество радиоактивных атомов; Т — период полураспада в секундах.
Возьмем грамм радия. Массовое число самого долгоживущего изотопа радия (его в большинстве случаев и называют «радием») равно 226. Это означает, что в 226 граммах радия содержится число Авогадро, т. е. 6,023∙10 28атомов (см. гл. I). Таким образом, количество атомов в одном грамме радия равняется числу Авогадро, разделенному на 226, или 2,66∙10 2'. Период полураспада радия-226 — 1620 лет, или 5,11∙10 10секунд.
Подставив в формулу 10.6 N= 2,66∙10 21, а вместо Т — 5,11∙10 10, получаем = 3,6∙10 10. Это значит, что в грамме радия каждую секунду распадается 36 000 000 000 атомов.
В 1910 году единица, обозначающая количество атомов, распадающихся в одном грамме радия за одну секунду, получила название кюри, в честь первооткрывателей радия. К тому времени были проведены более точные расчеты, в ходе которых выяснилось, что за секунду в грамме радия распадается 37 000 000 000 атомов.
Таким образом, за 1 кюри принят распад 3,7∙10 10атомов в секунду. Количество распадов в одном грамме радиоизотопа является его удельной радиоактивностью. Удельная радиоактивность атома радия равняется 1 кюри на грамм.
А как быть с другими изотопами? Скорость распада обратно пропорциональна периоду полураспада. Чем дольше период полураспада, тем меньше атомов распадается за одну секунду в данном количестве вещества, и наоборот. Получается, что скорость полураспада пропорциональна T r/T i где T r— период полураспада радия–226, а T i— период полураспада данного изотопа.
При фиксированной скорости полураспада количество атомов, распадающихся в грамме изотопа, обратно пропорционально массовому числу изотопа. Если изотоп тяжелее радия–226, то в одном его грамме содержится меньше атомов, и количество распадающихся в одном грамме атомов также будет меньше. Количество распадающихся атомов пропорционально M r/M i где M r— массовое число радия–226, а M i— массовое число данного изотопа.
Удельная радиоактивность (S H) радиоизотопа, т. е. количество распадающихся атомов в одном грамме за одну секунду, по сравнению с одним граммом радия, зависит от периодов полураспада и массовых чисел следующим образом:
Так как период полураспада радия–226 равен 5,11∙10 10секундам, а его массовое число равно 226, числитель формулы 10.7 равен 226(5,11∙10 10) = 1,15∙10 13. Тогда:
Например, для углерода–14, с периодом полураспада 5770 лет, или 1,82∙10 –секунд, и массовым числом 14, значение T iM i равно 2,55∙10 12. Разделив 1,15∙10 13на 2,55∙10 12, получаем, что удельная радиоактивность углерода–14 равна 4,5 кюри на грамм. Период полураспада углерода–14 длине равен периода полураспада радия–226, соответственно скорость его распада ниже. С другой стороны, углерод–14 гораздо легче радия–226, значит, в одном грамме углерода–14 распадается больше атомов, и фактическое количество распадающихся атомов в одном грамме углерода–14 выше, чем в одном грамме радия–226, несмотря на более низкую скорость распада.
Читать дальшеИнтервал:
Закладка: