Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Супруги Жолио-Кюри доказали присутствие радиоактивного фосфора, расплавив алюминий и подвергнув его реакциям, в ходе которых любой изотоп фосфора либо улетучится в виде газообразного соединения, либо выпадет в виде твердого осадка. Образовавшиеся газ и осадок проявляли радиоактивные свойства.

Фосфор–30 стал первым синтезированным в лабораторных условиях и не встречающимся в природе изотопом, а его радиоактивные свойства — первым примером искусственной радиоактивности.

Первым и далеко не единственным. В последующие годы в ходе лабораторных ядерных реакций были получены более тысячи искусственных изотопов. Так как все эти изотопы являются радиоактивными, их часто называют радиоизотопами.

Ученым удалось получить радиоизотоп каждого устойчивого элемента, а иногда даже несколько радиоизотопов. Например, у цезия, состоящего всего лишь из одного стабильного изотопа (цезий–133), таких радиоизотопов целых 20 с массовыми числами от 123 до 148.

Периоды полураспада всех полученных изотопов слишком малы, и они не могли сохраниться в земной коре с момента образования планеты до наших дней. Конечно же по человеческим меркам периоды полураспада некоторых из них довольно длинные (период полураспада цезия–135 равняется 2 000 000 лет), но в планетарных масштабах они все равно слишком малы.

Возможно, во время образования Солнечной системы существовали атомные ядра всех мыслимых составов. Выжили же лишь устойчивые и слаборадиоактивные (например, калий–40 и уран–238). И действительно, все стабильные и слаборадиоактивные изотопы, которые могут существовать, на Земле существуют. Шансы обнаружить какой-либо еще стабильный или слаборадиоактивный изотоп практически равны нулю.

Может быть, изотопы, период полураспада которых меньше 500 000 000 лет, также существовали, но впоследствии они распались и исчезли: какие-то из них быстро, какие-то медленно. Сегодня благодаря труду ученых они возродились.

Использование изотопов в биохимии

Как только физики научились изолировать редкие изотопы и синтезировать новые, стало возможным создавать на их основе химические соединения. Если найти достаточно дешевый способ получения таких изотопов, то в химических экспериментах можно будет использовать большое количество соединений на их основе.

Первым используемым в «крупномасштабных» химических экспериментах стал стабильный водород–2, получаемый из «тяжелой воды» (см. гл. 8).

Путем органических химических реакций из тяжелой воды можно получить и другие химические соединения, молекулы которых содержат один или несколько атомов водорода–2. Если такие соединения вступают в химические реакции, то их можно определить, изолировав продукты реакции и выяснив, какие из них содержат водород–2. Химические соединения с содержанием редкого изотопа выше нормы называются мечеными соединениями, а атомы такого изотопа — индикаторами.

Этот метод особенно важен, когда меченое соединение реагирует внутри живой ткани, так как в этом случае можно проследить все имеющиеся чрезвычайно сложные трансформации. Начиная с 1935 года немецкий биохимик Рудольф Шоенгеймер (1898–1941) провел серию таких экспериментов, используя в своих исследованиях жирные молекулы, в огромном количестве присутствующие в водороде–2. Этот метод стал революцией в биохимии, так как давал возможность детально изучить химические реакции в тканях, что ранее было невозможно.

Шоенгеймер, как и другие ученые, использовал в своих исследованиях и более тяжелые изотопы — азот–15 и кислород–18, — относительное содержание которых соответственно 0,37 и 0,20. Оба этих элемента достаточно редко встречаются в природе, и большое их количество является эффективными индикаторами.

Применение радиоизотопов привело к увеличению чувствительности при использовании индикаторов, так как по сравнению со стабильными изотопами даже небольшое количество радиоактивных изотопов можно обнаружить гораздо легче и быстрее.

Радиоактивные индикаторы впервые были использованы в 1913 году венгерским физиком Георгом Хевеши (1885–1966). В то время единственными доступными радиоактивными изотопами были изотопы, составляющие различные радиоактивные ряды. Хевеши использовал свинец–210 для определения растворимости слаборастворимых соединений свинца. (Измерив уровень радиоактивности соединения до и после реакции, он определил долю присоединившегося свинца–210 и предположил, что эта доля была одинакова для всех изотопов свинца.)

В 1923 году Хевеши пометил соединение свинца изотопами свинца–212 и изучил поглощение свинца растениями. Это стало первым применением индикаторов в биологии. Однако в естественных условиях живая ткань не содержит свинца, более того, свинец является сильнейшим ядом. Поведение ткани в присутствии свинца не является нормальным. По-настоящему широко применять радиоизотопы в биологии стали лишь после Второй мировой войны, когда появилась возможность получать в достаточном количестве радиоизотопы более «полезных» элементов.

Еще одним препятствием для применения радиоизотопного анализа было то, что у наиболее характерных для ткани элементов очень мало радиоизотопов. 90% мягких тканей тела состоят из углерода, водорода, кислорода и азота. Например, самым долгоживущим радиоизотопом азота является азот–13, период полураспада которого равен всего лишь 10 минутам. Это значит, что, получив азот–13, нужно ввести его в состав подходящего химического соединения, затем каким-либо образом внедрить в ткань, где тот встретится со своей судьбой, после чего изолировать и проанализировать образовавшиеся продукты, и на все про все — не более получаса, хотя даже к этому времени уровень радиоактивности азота–13 понизится на 7/ 8.

С кислородом дела обстоят еще сложнее. Самый долгоживущий из известных радиоизотопов кислорода — кислород–15, период полураспада которого всего лишь 2 минуты.

До 1940 года самым долгоживущим из радиоизотопов углерода считался углерод–11, период полураспада которого 20 минут. Это пограничный случай. С одной стороны, времени для маневра мало, но с другой — углерод является самым важным из всех элементов живой ткани. Поэтому биохимики начали разрабатывать методы выжимания максимума информации из химических реакций с соединениями, меченными углеродом–11, несмотря на ограничение по времени, вызванное коротким периодом полураспада.

Ученые не ожидали открыть более долгоживущий изотоп углерода. Однако в 1940 году в результате бомбардировки атомов углерода дейтронами (ядрами дейтерия, Н 2) был открыт новый радиоизотоп углерода.

Дейтрон состоит из одного протона и одного нейтрона, и во время бомбардировки дейтронами атомы углерода отдают протоны, удерживая нейтроны. В результате такой (α, p)-реакции атомное число не изменяется, но массовое число увеличивается на единицу. Углерод состоит из двух стабильных изотопов — углерода–12 и углерода–13. Углерод–12 в результате реакции превращается в углерод–13, а вот с углеродом–14 происходит следующее:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x