Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Именно благодаря исследованиям свойств газов было выяснено, что они состоят из широко расставленных молекул (а точнее — из широко расставленных индивидуальных атомов), а это дало возможность посмотреть на такие физические явления, как звук и тепло, с другой и более фундаментальной точки зрения.

Глава 11.

ЗВУК

Волны в жидкостях

Жидкости могут двигаться различными способами, подобными тем, которыми движутся твердые тела. Они могут подвергаться поступательному движению, как это делают текущие реки или дующие ветра. Они могут подвергаться вращательному движению, как это делают водовороты или торнадо. Наконец, они могут быть подвергнуты колебательному движению. Вот это, последнее, мы сейчас и будем рассматривать, поскольку вибрация в жидкостях может создавать изменение формы, которое будет направлено изнутри тела наружу. Такое перемещающееся изменение формы называется «волна». Несмотря на то что волны можно создать и в твердых телах, наиболее ясно видимы и заметны они на поверхностях жидкостей. Наши далекие доисторические предки были прекрасно знакомы с волнами на поверхностях воды и научились их бояться.

Если бросить камень в середину спокойного водоема, то вес камня толкает вниз воду, с которой он вступил в контакт, и создает понижение уровня воды в этом месте. Вода фактически несжимаема, так что воде, которая идет вниз, необходимо место, чтобы «отступить». Это можно сделать только одним способом: поднятием воды в непосредственной близости от брошенного камня, поэтому центральное понижение всегда окружено кольцом приподнятой воды.

Кольцо приподнятой воды опускается назад под воздействием силы тяжести, и его вес действует подобно весу первоначально брошенного камня. Оно перемещает воду ниже себя вниз и «выбрасывает» вверх более широкое кольцо воды немного дальше от первоначального центра возмущения.

По мере того как это продолжается, кольцо приподнятой воды расходится все дальше и дальше от центра. По мере перемещения все дальше и дальше наружу полная масса приподнятой воды распространяется по все большей и большей окружности, а высота приподнятого кольца поэтому становится все меньше и меньше.

Но при этом из центра возмущения не выходит одна-единственная волна. Поскольку начальный вал приподнятой воды немедленно опускается относительно центра возмущения, это не только выталкивает вал воды вне себя, но также выталкивает воду и в центре. Центр поднимается, а затем снова опускается; действие это, если можно так выразиться, подобно тому, если бы мы бросили второй камень, что приводит к возникновению второго кругового вала воды, который распространяется по внутренней части направленного наружу первого вала. Это, в свою очередь, приводит к возникновению третьего вала… и так далее. Каждый последующий вал — более низкий, чем предыдущий, так как с каждым повышением и падением части воды часть энергии используется на преодоление внутреннего трения воды и преобразуется в теплоту. В то время как данный вал воды распространяется наружу, часть его энергии также непрерывно преобразовывается в теплоту. В конечном итоге все волны заглохнут и водная гладь снова станет тихой; однако вода станет немного более теплой, потому что поглотила кинетическую энергию падающего камня.

Чтобы создать волну, нам требуется создать начальное возмущение. Если это начальное возмущение в процессе «самоисправления» нарушает соседнюю область способом, подобным первоначальному возмущению, то мы получаем новую волну — первоначальная волна «размножается».

Если мы сконцентрируем наше внимание на некоторой точке, находящейся в пределах этой порожденной волны, то мы увидим, что некоторые свойства в этой точке возрастают и убывают, часто — периодически. В случае волн в жидкости, например, если мы рассмотрим некоторую часть водной поверхности, то обнаружим, что таким изменяющимся свойством является потенциальная энергия, поскольку эта часть поверхности сначала поднимается, а затем опускается, чтобы снова подняться.

Важно понять, что вода перемещается только вверх и вниз. Возмущение распространяется по направлению наружу, поперек поверхности воды, и поэтому случайному наблюдателю кажется, что вода перемещается по направлению наружу; однако этого не происходит! Существует только возмущение поверхности. Деревянная щепка, плавающая на воде, по которой пошла рябь, будет двигаться вверх и вниз вместе с водой, на которую она опирается, но перемещающаяся по поверхности воды рябь не будет нести щепку вслед за собой. Безусловно, волны, прибивающие к берегу ряску и камыш, несут их на себе, иной раз даже с достаточной силой; мы можем наблюдать, как волны бьют эти предметы о скалы или выбрасывают на морской песок. Однако происхождение этих волн иное — они порождены горизонтальной силой ветра, а мы рассматриваем рябь, которая возникает в водоеме от брошенного туда вертикально камня.

Представим себе поперечное сечение поверхности воды, в которой происходит возмущение от упавшего камня. В идеальном случае, если не принимать во внимание потерю высоты при увеличении окружности или потерю энергии за счет теплоты, мы имеем равномерное повышение и падение. Эти повышения и падения и являются тем, что мы обычно понимаем под словом «волна», а также и тем, что мы имеем в виду, когда говорим «волнистая линия».

В своей самой простой форме такая волнистая линия идентична той, что возникает, если мы проецируем значение синуса равномерно изменяющегося угла на миллиметровую бумагу. Для угла в 0° значение синуса равно 0. По мере увеличения угла синус его также увеличивается, сначала быстро, а затем все более медленно, пока оно не достигнет своего максимума, равного единице, при значении угла, равном 90°. При дальнейшем возрастании угла значение синуса начинает уменьшаться, сначала медленно, а затем все более быстро, снова достигая 0 при 180°, переходя после этого и в область отрицательных значений. Оно достигает своего минимума, равного -1, при 270°, а затем продолжает увеличиваться, чтобы снова достигнуть 0 при 360°. Угол в 360° может рассматриваться эквивалентным углу в 0°, так что весь процесс можно рассматривать как начавшийся снова и продолжающийся неопределенное время. Тогда в проекции графика движения мы получаем волнообразную фигуру, которая простирается по направлению наружу на неопределенное расстояние и совершает регулярные колебания между значениями +1 и –1. Именно эта волнообразная фигура (синусоида) и представляет собой форму идеализированной жидкостной волны.

Волны, подобные жидкостной волне, в которой движение каждой ее части происходит в одном направлении (в этом случае — вверх и вниз) и направление распространения возмущения находится под прямым углом к этому направлению движения (в нашем случае — направлено наружу поперек поверхности жидкости), называются «поперечными волнами» (transverse wave — от латинских слов, означающих «лежащий поперек»; движение воды происходит «поперек» линии распространения).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x