Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Межмолекулярные силы в водороде настолько слабы, что твердый водород плавится при температуре всего лишь 14 °К (или –259 °С), а жидкий водород кипит (при атмосферном давлении) при температуре, равной всего лишь 20 °К (или –253 °С). Однако гелий показывает даже еще более впечатляющие результаты. Его частицы состоят из отдельных атомов, а межатомные силы настолько слабы, что даже одной единицы кинетической энергии все еще достаточно, чтобы держать его в жидком состоянии при температуре, равной абсолютному нулю. Твердый гелий не может существовать независимо от того, насколько низка температура; для его появления необходимо увеличение давления — оно должно быть большим, чем атмосферное. Точка кипения гелия под давлением, равным одной атмосфере, находится на 4 °К (или –269 °С).

С другой стороны, некоторые вещества обладают межмолекулярными или межатомными силами настолько сильными, что они остаются твердыми телами при температуре, значительно превышающей обычную. Металлический вольфрам не плавится, пока не достигнет температуры 3370 °С, и не кипит при атмосферном давлении, пока не достигнет температуры 5900 °С.

Удельная теплоемкость

Пока что при обсуждении теплоты мы акцентировались на понятии «температура»; однако следует избегать путаницы между двумя разными терминами. Термины «теплота» и «температура» ни в коем случае не идентичны. Конечно, легко предположить, что если один образец воды имеет более высокую температуру, чем другой, то он более горячий, а потому обладает и большим количеством теплоты. Но это последнее утверждение, однако, не обязательно является истинным.

Наперсток, наполненный водой, при температуре 90 °C намного более горячий, чем ванна полная воды при температуре 50 °С, но ванна с водой имеет гораздо большее количество теплоты. Если оставить их стоять при комнатной температуре, то наперсток, полный воды, охладится до комнатной температуры за время, в течение которого ванна с водой едва ли охладится вообще. Наперсток с водой теряет свою полную теплоту быстрее, в частности, потому, что обладает гораздо меньшим количеством того, что ему следует терять.

Количество теплоты, которое содержит система, — это полная внутренняя энергия [70] «Внутренняя энергия» вещества состоит из кинетической энергии составляющих его частиц плюс энергия, вовлеченная в межмолекулярные соединения. молекул, составляющих эту систему, в то время как температура — это мера средней поступательной кинетической энергии отдельных молекул. Другими словами, теплота представляет собой полное количество энергии, а температура — количество из расчета на одну молекулу.

Постараемся объяснить эту разницу на примере такой аналогии. Предположим, что мы налили один литр воды в высокий тонкий цилиндрический сосуд так, чтобы он образовал столб воды высотой в один метр. Теперь нальем пять литров воды в гораздо более широкий цилиндрический сосуд так, чтобы получился водяной столб высотой в 0,1 метра. Вода в узком сосуде оказывает большее давление на его дно, однако, хотя высота столба воды в другом цилиндре составляет всего 0,1 от высоты первого, то есть давление составляет всего лишь десятую часть от первого, объем его в пять раз больше. Объем — это полное количество, в то время как давление — величина на единицу площади. Аналогична этой и взаимосвязь между теплотой и температурой.

Вам может показаться, что вводить такое различие между теплотой и температурой — ненужная трата сил? В конце концов, если мы, например, нагреваем воду, то она набирает теплоту, и температура идет вверх; эти две величины повышаются вместе, так почему бы не использовать одну как меру другой? К сожалению, это «параллельное» поведение теплоты и температуры может быть подсчитано только тогда, когда мы имеем дело с данным количеством некоего специфического вещества, и даже тогда это можно сделать только в некотором ограниченном диапазоне температур. Это хорошо можно увидеть, если сравнить содержание теплоты в двух различных предметах, находящихся при равной температуре.

Для того чтобы сделать это, мы нуждаемся в единице измерения теплоты. Ранее в книге я вскользь упомянул такую единицу, она называется «калория». Теперь давайте более детально рассмотрим, что же это такое.

Предположим, что мы добавляем теплоту к воде, таким образом поднимая ее температуру. Эксперименты показывают, что количество теплоты, требуемой, чтобы поднять температуру воды на установленное число градусов, изменяется вместе с массой воды, которая эту теплоту получает.

Мы можем, например, принять, что 100 граммов воды, находящихся при температуре кипения, содержат некоторое установленное количество теплоты. Если 100 граммов кипящей воды вылить в 5 килограммов (5000 граммов) холодной воды, температура холодной воды повысится приблизительно на 2 °С. С другой стороны, если 100 граммов кипящей воды вылить в 10 килограммов холодной воды, то температура холодной воды повысится только на 1 °С.

И снова, количество теплоты, требуемое, чтобы поднять температуру данной массы воды, изменяется в зависимости от числа градусов Цельсия, на которое требуется эту температуру поднять. Для того чтобы поднять температуру данного количества холодной воды на 10 °С, требуется вдвое больший объем кипящей воды, чем для того, чтобы поднять температуру этого же количества холодной воды на 5 °С. Поэтому единица измерения теплоты должна быть выражена в единицах массы и единицах повышения температуры, например количество теплоты, которое потребуется для того, чтобы поднять температуру одного грамма воды на один градус Цельсия. На самом деле более точные измерения показывают, что количество теплоты, которое требуется для того, чтобы поднять температуру одного грамма воды на один градус Цельсия, слегка изменяется в зависимости от первоначальной температуры воды, так что в определение следует также включить и первоначальную температуру. Таким образом, мы можем сказать, что одна калория — это количество теплоты, которое потребуется, чтобы поднять температуру одного грамма воды с 14,5 °С до 15,5 °С.

Или мы можем сказать, что одна тысяча калорий, или одна килокалория, — это то количество теплоты, которое потребуется для того, чтобы поднять температуру одного килограмма (1000 граммов) воды с 14,5 °С до 15,5 °С.

Предположим теперь, что один грамм алюминия был помещен в кипящую воду на время, достаточное для того, чтобы быть уверенным, что он приобрел температуру кипящей воды (100 °С). Давайте быстро погрузим горячий алюминий в 100 граммов воды при 0 °С. Алюминий будет охлаждаться, и его теплота будет добавлена воде, тем самым ее температура поднимется от 0 °С до примерно 0,22 °С.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x