Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы поднять температуру 100 граммов воды на 0,22 градуса Цельсия, потребуется приблизительно 22 калории (100 умножить на 0,22). То есть один грамм алюминия, охлаждаясь от 100 °С до 0,22 C°, освободил приблизительно 22 калории. В соответствии с законом сохранения энергии мы ожидаем, что если это охлаждение освободило 22 калории, то добавление 22 калорий к холодному алюминию поднимет его температуру до 100 °С. Грубо говоря, тогда мы можем сказать, что потребуется 22 калории, чтобы поднять температуру 1 грамма алюминия на 100 °С, или 0,22 калории, чтобы поднять его температуру на 1 °С. Данная величина представляет собой «удельную теплоемкость» алюминия; удельная теплоемкость вещества — это то количество теплоты, которое требуется для того, чтобы поднять температуру 1 грамма этого вещества на 1 градус Цельсия.

Экспериментальным путем можно найти, что удельная теплота железа равна 0,11, меди — 0,093, серебра — 0,056, а свинца — 0,03. Если добавить одну калорию теплоты к одному грамму алюминия с температурой 0 °С, то этого количества теплоты будет достаточно, чтобы нагреть его на 1/ 0,22, или на 4,5 C°, то есть до температуры 4,5 °С. То же самое количество теплоты при тех же самых условиях поднимет температуру одного грамма железа до 9 °С, меди — до 11 °С, серебра — до 18 °С, а свинца — до 33 °С.

Вот тут мы хорошо видим пользу от разницы между теплотой и температурой: действительно, то же самое количество теплоты может быть добавлено к данной массе каждого из множества различных веществ, и каждое из них достигнет различной температуры. Следовательно, температура сама по себе не является мерой содержания полного количества теплоты.

(Если обратиться назад, к нашему сравнению и связи между давлением и объемом, то это подобно тому, как если бы мы налили равный объем воды в цилиндрические сосуды различных диаметров. Объемы могут быть теми же самыми, однако величины давлений разнятся, и давление не может считаться мерой полного объема.)

Концепция удельной теплоемкости была впервые выдвинута в 1760 году шотландским химиком Джозефом Блэком (1728–1799).

Причиной для этого изменения удельной теплоемкости от вещества к веществу отчасти является различие в массах атомов, составляющих каждое из них. Масса атома свинца приблизительно в 7,7 раза больше, чем масса атома алюминия, масса атома серебра в 4 раза больше массы атома алюминия, масса атома меди в 2,3 раза больше массы атома алюминия, и, наконец, масса атома железа в 2,1 раза больше массы атома алюминия.

Из-за этого данная масса свинца, например 1 грамм, содержит только 1/ 7,7часть количества атомов, что и та же масса, но алюминия. Таким образом, при добавлении некоторого количества теплоты в 1 грамм свинца мы вовлекаем в движение меньшее количество атомов, и соответственно требуется меньшее количество теплоты, чтобы увеличить кинетическую энергию отдельных атомов до уровня, достаточного, чтобы обеспечить повышение температуры на один градус Цельсия. По этой же причине удельная теплоемкость свинца, равная 0,03, примерно равна 1/ 7,7таковой алюминия, которая равна 0,22. Точно так же удельная теплоемкость серебра равна примерно ¼ таковой алюминия, удельная теплоемкость меди равна примерно 1/ 2,3и, наконец, удельная теплоемкость железа равна примерно 1/ 2,1 удельной теплоемкости алюминия.

Общим правилом для большинства элементов является то, что произведение удельной теплоемкости на относительную массу атомов рассматриваемого вещества имеет примерно одно и то же значение для всех элементов. Рассматриваемая здесь относительная масса атомов различных химических элементов («атомный вес») выбирается таким образом: атом водорода, который является самым легким, имеет вес чуть более единицы; исходя из этого, для большинства химических элементов произведение удельной теплоемкости на атомный вес дает нам приблизительно шесть калорий.

Это заключение известно как закон Дюлонга и Пети, названный так в честь французских физиков Пьера Луи Дюлонга (1785–1838) и Алексиса Тереса Пети (1791–1820), которые впервые выдвинули это предположение в 1819 году.

Латентная (скрытая) теплота

Вам могло бы показаться, что понятия температуры как меры содержания количества теплоты и теплоты будут очень сближаться, стоит только воспользоваться для расчетов атомами или молекулами вместо граммов. Это было бы так, если бы закон Дюлонга и Пети был справедлив для всех веществ и при любых условиях, но это не так. Он справедлив только для твердых элементов и только в некотором температурном диапазоне. Действительно, можно показать случаи, когда содержание количества теплоты может сильно изменяться без всякого изменения температуры вообще, и этого вполне достаточно, чтобы прекратить использование понятия температуры как меры содержания теплоты.

Предположим, что к 100 граммам жидкой воды с температурой 0 °С добавлены 100 граммов жидкой воды с температурой 100 °C. После перемешивания окончательная температура смеси будет равна 50 °С.

Затем предположим, что 100 граммов льда с температурой 0 °С добавлены к 100 граммам жидкой воды с температурой 100 °С. После таяния льда и перемешивания смеси (предполагая, что во время ожидания не произошло никакой потери теплоты в окружающую среду или увеличения теплоты из окружающей среды, — задача, которая может быть решена посредством изоляции всей системы) мы обнаружим, что температура смеси составляет всего лишь 10 °С.

Почему так получилось? Понятно, что жидкая вода с температурой 0 °C содержит большее количество теплоты, пригодной для того, чтобы внести ее в окончательную смесь, чем лед при тех же 0 °С, и все же? Ведь и жидкая вода, и лед имели одну и ту же температуру. Кажется разумным предположить, что во втором случае некоторое количество теплоты, которое содержится в горячей воде, было использовано на процесс таяния льда, и, таким образом, для подъема температуры смеси осталось гораздо меньшее его количество.

Действительно, если мы будем нагревать смесь льда и воды, то обнаружим, что независимо от того, какое количество теплоты было передано смеси, температура системы остается равной 0 C°, пока последний кусочек льда не будет расплавлен. И только после того, как лед расплавится, теплота начинает преобразовываться в кинетическую энергию, и только тогда температура воды может начать повышаться. Эксперимент показывает: для того чтобы расплавить один грамм льда, из окружающей среды поглощается примерно 80 калорий теплоты и в процессе этого расплава не происходит никакого повышения температуры смеси. Лед, находящийся при температуре 0 °С, преобразуется и воду, находящуюся при тех же 0 °C.

Да, но если теплота, которую получает лед, не преобразуется в кинетическую энергию молекул, что же случается с ней? Ведь согласно закону сохранения энергии, как мы знаем, она не может просто исчезнуть.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x