Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Именно по этой причине холодный металл ощущается как намного более холодный, чем холодная древесина. Металл и древесина могут иметь равную температуру, но тепло покидает руку гораздо быстрее, когда она находится в контакте с металлом, чем с древесиной. Температура той части руки, которая вступила в контакт с металлом, понижается намного быстрее. Аналогично, мы можем без опаски поднять ведро кипящей воды за деревянную или пластмассовую накладку на ее ручке, поскольку теплота от металла (которого мы рекомендуем не касаться) проходит через древесину или пластмассу крайне неохотно и недостаточно интенсивно, чтобы нанести нам ущерб.

Система, полностью окруженная материалом с низкой удельной теплопроводностью, очень медленно отдает теплоту в окружающую внешнюю среду; она также и получает теплоту извне крайне медленно, даже невзирая на то, что разница в температурах, внешней и внутренней, может быть значительной. Система выглядит как остров, если можно так выразиться, специфической температуры посреди внешнего моря различной температуры. Поэтому такую систему называют «изолированной» (от латинского слова, означающего «остров»), а материал, обладающий низкой удельной теплопроводностью, называют «теплоизолятором» или «теплоизоляционным материалом».

Газы обладают низкими коэффициентами теплопроводности, поэтому воздух является хорошим теплоизолятором. Шерстяные одеяла и одежда «заманивают в ловушку» слой воздуха, который содержится в крошечных промежутках между волокнами, поэтому тепло очень медленно уходит из нашего тела во внешнюю холодную окружающую среду, благодаря этому мы и имеем ощущение теплоты, которое нам дает одежда. Шерсть и воздух сами по себе не греют, но создают эффект нагрева, помогая нашему телу сохранить свою собственную теплоту. Для этой цели было бы достаточно и одного воздуха, если бы мы могли заставить его не двигаться. Но нагретый воздух около наших тел постоянно сменяется прохладным воздухом в результате вездесущих воздушных потоков. Теплоту уносит конвекцией, поэтому, кстати, ветреный день кажется нам более холодным, чем безветренный, несмотря на то что температура вокруг нас остается той же самой.

Все вещества имеют коэффициенты теплопроводности больше нуля, и не существует никакого вещества, которое бы имело его равным нулю, то есть было бы абсолютным теплоизолятором. Предположим, тем не менее, что мы воспримем фразу «никакое вещество» буквально и окружим систему вакуумом. Тогда мы получим самый лучший изолятор, чем какой-либо из тех, что мы можем найти в царстве материалов. Физический вакуум обладает коэффициентом теплопроводности, равным нулю, а также не может вызывать теплоотдачу и через конвекцию. Однако даже вакуум не является абсолютным теплоизолятором, он все еще будет служить тропою для потери теплоты через радиацию.

Потеря тепла через радиацию, однако, является более медленным процессом, чем потеря его через кондукцию или конвекцию. Чтобы использовать свойства вакуума, некоторые сосуды делают /двухслойными, а в промежутке между внешней и внутренней стенками создают вакуум. Кроме того, стенки могут быть сделаны зеркальными, так чтобы любая теплота, исходящая через вакуум в любом направлении, почти полностью отражалась. Как результат, процесс проникновения теплоты через такой «вакуумный сосуд» или «термос» происходит чрезвычайно медленно. Горячий кофе в термосе остается горячим в течение длительного периода времени, а холодное молоко настолько же долго остается холодным.

Такие устройства были впервые в 1892 году созданы шотландским химиком Джеймсом Дьюаром (1842–1923). Он использовал их, чтобы хранить чрезвычайно холодные вещества типа жидкого кислорода, создавая им условия, при которых доступ теплоты снаружи минимизирован, а соответственно минимизировано и парообразование. Такие сосуды до сих пор применяются в химических лабораториях и для той же цели; в его честь они называются «сосудами Дьюара».

Второй закон термодинамики

Подводя итог всему, что было написано в предыдущей главе, мы можем сказать, что в соответствии с опытом всего человечества в любой изолированной системе теплота будет спонтанно перетекать из области с более высокой температурой в область с более низкой температурой. Справедливо считать это «вторым законом термодинамики».

Представление о теплоте как о своего рода жидкости достигло своего пика в 20-х годах XIX века. Строгий математический анализ потока теплоты согласно этому представлению был выдвинут в 1822 году Фурье — основоположником гармонического анализа. Но еще дальше развил это представление другой французский физик — Никола Леонар Сади Карно (1796–1832).

В 1824 году Карно проанализировал работу парового двигателя в терминах, которые мы можем рассматривать аналогичными тем, что могли бы применяться к анализу водопада. Энергию водопада можно использовать для того, чтобы вращать колесо водяной мельницы, а это движение в дальнейшем может быть использовано для механического привода различных устройств. Таким образом энергия падающей воды может быть преобразована в работу.

Для данного объема воды количество энергии, которое может быть преобразовано в работу, зависит от высоты падения воды, то есть от разности высот от поверхности воды, куда падает водопад, до излома скалы, с которой он падает.

Мы можем измерить эти две высоты от любой согласованной точки отсчета. Приняв уровень воды в водоеме за «нулевую» точку, мы можем сказать, что его высота (h 1) равна нулю. Тогда если высота скалы (h 2) равна 10 метрам, то величина перепада высот будет равна +10 метрам. То есть расстояние, которое пролетает падающая вода, будет равно h 2– h 1 , то есть 10 — 0, или 10 метрам.

Можно точно так же взять за нулевую точку и высоту над уровнем моря. В этом случае h 1, будет равняться +1727 метров, а h 2 будет + 1737 метров; h 2— h 1, в этом случае будет равен 1737–1727, или все тем же 10 метрам. Наиболее строго и верно (по крайней мере, на Земле) было бы взять за нулевую точку центр Земли. В этом случае значения h 1и h 2составили бы соответственно 6 367 212 метра и 6 367 222 метра, а h 2–h 1— все те же самые 10 метров. Ну и как вариант мы могли бы позволить быть нашей нулевой точкой вершине горы. Тогда если h 2равняется нулю, то h 1, которая представляет собой уровень воды в водоеме, находящийся на 10 метров ниже, чем вершина горы, будет иметь значение –10 метров. В этом случае перепад высот h 2– h 1 , будет составлять 0 – (–10), или все те же 10 метров.

Я потратил столько времени и сил на эту точку только для того, чтобы абсолютно ясно дать понять, что значения h 1 и h 2 не являются абсолютными величинами, которые оказывают влияние на расчет количества работы, которое можно получить из энергии падающей воды; только разность между ними — перепад высот — имеет решающее значение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x