Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Если мы и дальше продолжим рассмотрение водопада, то, кроме того, обнаружим ясное различие между содержанием полной энергии воды и свободной энергии. Вода падает сверху к основанию водопада и образует там спокойный водоем. Несмотря на то что водоем сам по себе не способен к вращению водяного колеса, он все же содержит много потенциальной энергии. Если мы выроем в водоеме отверстие, то вода пойдет по нему вниз, и часть ее энергии можно будет преобразовать в работу при условии, что водяное колесо будет помещено на дне отверстия. Идеальным было бы прорыть отверстие к центру Земли, тогда мы могли бы использовать всю потенциальную энергию воды (по крайней мере, относительно Земли). Однако на практике никто не роет никаких отверстий, а используется только энергия падающей воды существующего водопада. Эта энергия доступна нам. Оставшаяся потенциальная энергия воды, если считать ее от центра Земли, присутствует, но недоступна нам.
Этот же тип рассуждений мы можем применить и к потоку теплоты. В паровом двигателе (или в любом другом тепловом двигателе, например в таком, который мог бы использовать пары ртути, а не водяной пар) потоки теплоты двигаются из горячей области — парового цилиндра — к холодной области — конденсору. Теплота течет из области высокой температуры к области низкой температуры так же, как поток жидкости течет от большей высоты к меньшей. Количество энергии, которая может быть конвертирована в работу, определяет совсем не величина высокой или низкой температуры, а скорее разность температур. В таком случае будет справедливо по отношению к тепловому двигателю представлять «доступную энергию» в терминах разницы температур в пределах двигателя. Наиболее удобно выражать это в терминах абсолютной температуры, концепция, которую Карно не успел полностью разработать из-за своей преждевременной смерти от холеры в возрасте 36 лет. Если мы обозначим температуру горячей области теплового двигателя T 2, а холодную область его же T 1, то тогда доступная энергия может быть представлена как T 2– T 1 .
Холодная область парового двигателя, конечно, все еще содержит теплоту. Если температура конденсора равна 25 C°, воду, которую он содержит (образовавшуюся из сжатого пара), в принципе можно охладить дальше и заморозить или охладить еще дальше — до абсолютного нуля; таким же образом воду в принципе можно опустить к центру Земли. Полная энергия системы будет представлена разностью температур между горячей областью и абсолютным нулем, то есть разность становится равной Т 2– 0, или просто Т 2.
Максимальная эффективность (КПД — коэффициент полезного действия) £ такого теплового двигателя будет равна отношению доступной энергии к полной энергии. Если по условиям работы теплового двигателя мы в принципе можем преобразовать всю энергию системы, то эффективность (КПД) его будет равна 1,0; если только половина полной энергии может быть преобразована в работу, то £ будет равняться 0,5, и так далее. Тогда, выражая доступную энергию и полную энергию в терминах разницы температур, мы можем сказать, что:
Теперь предположим, что мы имеем тепловой двигатель, в котором пар, находящийся при температуре 150 °С (или 423 °К), конденсируется в воду с температурой 50 °С (или 323 °К). Максимальная эффективность (КПД) такого двигателя тогда будет равна (423–323)/423, или 0,236. То есть мы видим, что лишь менее чем четверть полной теплоты, содержащейся в паре, была бы доступна для преобразования ее в работу.
Больше того, даже это значение может быть достигнуто только в том случае, если тепловой двигатель механически идеален, то есть если не имеется никаких потерь энергии во внешнюю среду — ни через трение, ни через тепловое излучение и так далее. В реальной жизни тепловые двигатели обладают гораздо меньшей эффективностью, чем тот максимум, который предсказан нам в уравнении 15.1. Однако уравнение 15.1 устанавливает максимум, за который не могут заходить даже идеальные механические конструкции.
Уравнение 15.1 получено при условии, что теплота течет только из горячей области к холодной и никогда — наоборот. Таким образом, оно поэтому также является выражением второго закона термодинамики, то есть второй закон может рассматриваться как устанавливающий некоторые, нового вида, ограничения на использование энергии.
Первый закон термодинамики (закон сохранения энергии) однозначно дает понять, что никто не может извлечь большее количество энергии от системы, чем то ее полное значение, которое содержится в ней. Второй закон термодинамики утверждает, что невозможно получить большее количество работы из системы, чем количество доступной свободной энергии, и что величина доступной свободной энергии является неизменно меньшей, чем величина полной энергии, в том случае если не будет достигнута температура абсолютного нуля [72] Первый закон термодинамики утверждает: «Вы не можете победить…», а второй закон термодинамики добавляет: «И даже — не пытайтесь…»
.
Второй закон термодинамики указывает нам на очень важный факт. Чтобы получить работу от теплового двигателя, должна иметься разность температур. Предположим, горячая и холодная области имеют одну и ту же температуру T 2, тогда в уравнении 15.1 разность температур (T 2— T 1) станет равна (T 2– T 2)/T 2, или 0, то есть величина доступной энергии становится равной нулю. (Таким же образом водопад с высотой нуль метров не способен выполнять никакую работу.)
Если бы это было не так, можно было бы, например, представить себе, что судно, плывущее по океану, могло бы впитывать в себя воду, использовать часть энергии, содержащейся в ней, а затем удалять эту воду (более холодную, чем она была прежде) назад в океан. Все суда в мире и многие другие устройства, придуманные человечеством, могли управляться за счет пустяковой доли огромного количества энергии, которая содержится в Мировом океане. Конечно, во время этого процесса океан слегка бы охладился, а атмосфера нагрелась бы, но поток теплоты был бы направлен назад — от воздуха к воде, и все бы было хорошо.
Однако пока второй закон термодинамики выражается уравнением 15.1, это невозможно. Чтобы извлечь теплоту из океана, нам бы понадобился бассейн с водой более холодной, чем в океане, и устройство охлаждении, чтобы поддерживать эту воду более холодной, чем в океане. Но энергия, израсходованная на охлаждение, была бы больше, чем энергия, извлеченная из океана (предполагая, что устройство охлаждения должно быть механическим, то есть не идеальным, поскольку это невозможно), а значит, мы не получили бы ничего. Фактически мы можем только потерять энергию. И действительно, все «вечные двигатели» придуманы изобретателями в тщетной надежде так или иначе нарушить второй закон термодинамики. Патентные бюро даже перестали рассматривать заявки на изобретения такого рода, пока не будут представлены работающие модели, а такие модели до сих пор представлены не были, и шансы на их построение — весьма невелики.
Читать дальшеИнтервал:
Закладка: