Стивен Габсер - Маленькая книга о большой теории струн
- Название:Маленькая книга о большой теории струн
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2015
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Габсер - Маленькая книга о большой теории струн краткое содержание
Маленькая книга о большой теории струн - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
С импульсом мы все хорошо знакомы, но лучше понять, что это за зверь, можно, посмотрев глазами физика на столкновение двух тел. Если два бильярдных шара столкнулись лоб в лоб и полностью остановились, значит, до столкновения они имели одинаковые импульсы. Если после столкновения один шар всё ещё движется в первоначальном направлении, но медленнее, значит, он имел больший импульс, чем второй. Импульс и масса связаны простой формулой: p = mv . Но давайте пока не будем углубляться в детали. Суть в том, что импульс является чем-то, что вы можете измерить, и это измерение имеет некоторую неопределённость, которую мы обозначим как Δ p .
Принцип неопределённости утверждает, что Δ p × Δ x ≥ h /4π, где h — некоторая константа, называемая постоянной Планка, а π = 3,14159... — хорошо известное нам соотношение между длиной окружности и её диаметром. Я предпочитаю произносить: «дельта пэ дельта икс больше или равно аш на четыре пи», но если вы предпочитаете «научно-литературный» физико-математический язык, то вам следует говорить: «произведение неопределённостей импульса и координаты частицы не меньше отношения постоянной Планка к четырём пи». Теперь, надеюсь, понятно, почему я сказал, что утверждение, приведённое в начале этого раздела, не вполне корректно: вы можете одновременно измерить координату и импульс частицы, но неопределённость этих двух измерений никогда не может быть меньше, чем допускает уравнение Δ p × Δ x ≥ h /4π.
Чтобы лучше понять, как работает принцип неопределённости, представьте себе, что мы поймали частицу в ловушку, имеющую размер Δ x . Положение частицы известно нам теперь с неопределённостью Δ x (при условии, что частица находится внутри ловушки). Принцип неопределённости утверждает, что мы не можем узнать величину импульса этой частицы с точностью большей, чем позволяет упомянутое выше соотношение. Количественно неопределённость импульса должна быть такой, чтобы удовлетворить неравенству Δ p × Δ x ≥ h /4π. Как мы увидим в следующем разделе, прекрасный пример реализации принципа неопределённости представляет собой атом. Более наглядный пример привести трудно, поскольку типичная неопределённость координаты гораздо меньше, чем размер любого предмета, который можно взять в руки. Это происходит из-за того, что величина постоянной Планка крайне мала. Мы вернёмся к ней ещё раз, когда будем говорить о фотонах, и тогда я сообщу вам её численное значение.
Несмотря на то что обычно при обсуждении принципа неопределённости мы говорим об измерениях координат и импульса, его суть гораздо глубже. Он представляет собой внутреннее ограничение, накладываемое на понятия координаты и импульса. В конечном итоге импульсы и координаты — это не числа. Это более сложные объекты, называемые операторами; и я не стану пытаться их здесь описывать, а только скажу, что операторы являются широко используемыми математическими конструкциями, только более сложными, чем числа. Принцип неопределённости вытекает из различия между числами и операторами. Величина Δ x — это не просто неопределённость измерения координаты, это фундаментальная неустранимая неопределённость положения частицы. Иными словами, принцип неопределённости отражает не недостаток информации, а фундаментальную «нечёткость» субатомного мира.
Атом
Атомы состоят из электронов, вращающихся вокруг атомных ядер. Атомные ядра, как я уже рассказывал, состоят из протонов и нейтронов. Простейшим случаем, с рассмотрения которого мы и начнём, является атом водорода, состоящий из одного электрона, вращающегося вокруг ядра, состоящего из одного протона. Размер атома водорода имеет порядок 10 −10метра. Единицу измерения 10 −10метра называют также ангстремом . Говоря, что один ангстрем равен 10 −10метра, мы имеем в виду, что в одном метре 10 10, или десять миллиардов, ангстрем. Размер атомного ядра примерно в сто тысяч раз меньше. Смысл утверждения, что размер атома имеет порядок одного ангстрема, состоит в том, что электрон крайне редко удаляется от ядра на расстояние больше одного ангстрема. Неопределённость положения электрона — Δ x — также порядка одного ангстрема, поэтому невозможно сказать, с какой стороны от ядра в конкретный момент времени находится электрон. Принцип неопределённости требует, чтобы неопределённость импульса электрона — Δ p — удовлетворяла неравенству Δ p × Δ x ≥ h /4π. Это приводит к тому, что электрон в атоме водорода должен обладать некоторой средней скоростью, порядка одной сотой скорости света, но направление этой скорости в каждый конкретный момент времени принципиально неопределённо. Неопределённость импульса электрона является, в сущности неопределённостью самого импульса, поскольку не определено его направление. Общая картина выглядит так, что электрон пойман в ловушку кулоновским притяжением ядра, но квантовая механика запрещает ему находиться в этой ловушке в состоянии покоя. Вместо этого он непрерывно «блуждает» в переделах ловушки, и характер его блуждания описывается математическим аппаратом квантовой механики. Область блуждания электрона и определяет размер атома. Если бы электрону разрешили спокойно сидеть на одном месте, он бы сразу упал на ядро под действием кулоновской силы притяжения. В результате все материальные предметы сжались бы до ядерной плотности, что было бы весьма некомфортно. Таким образом, квантовый запрет на неподвижность электронов внутри атомов является большим благом для нас.
Несмотря на то что электрон в атоме водорода обладает неопределённой координатой и неопределённым импульсом, его энергия вполне определённа. На самом деле электрон может обладать несколькими возможными дискретными значениями энергии. О такой ситуации физики говорят, что энергия электрона в атоме «квантована». Это значит, что электрон имеет выбор из некоторого определённого набора вариантов. Чтобы лучше разобраться в этом странном положении дел, вернёмся к уже знакомой нам кинетической энергии. Мы помним, что кинетическая энергия определяется формулой K = ½ mv 2. Для начала применим эту формулу к автомобилю. Меняя силу нажатия на педаль газа, вы можете придать автомобилю любую скорость в пределах его технических возможностей. Однако если бы энергия автомобиля квантовалась, то при условии, что масса автомобиля неизменна, вы могли бы заставить его двигаться только с какой-либо фиксированной скоростью из дискретного набора, например только со скоростью 10, 15 или 25 километров в час, но не 11, 12 или 12,5 километра в час.
Квантование энергии электрона в атоме водорода возвращает меня к аналогии с музыкой. Я уже говорил о подобной аналогии на примере полиритмии 4:3 в «Экспромт-фантазии». Устойчивый музыкальный ритм характеризуется определённой частотой. Каждый квантовый энергетический уровень атома водорода также соответствует определённой частоте. Электрон может «выбрать» один из этих уровней, подобно тому как музыкант может выбрать какой-то определённый ритм и выставить его на метрономе. Но электрон может также частично находиться на одном энергетическом уровне, а частично на другом. Это явление носит название «суперпозиция». Ритм «Экспромт-фантазии» как раз является суперпозицией двух различных ритмов, исполняемых правой и левой рукой.
Читать дальшеИнтервал:
Закладка: