Александр Китайгородский - Физика для всех. Книга 3. Электроны

Тут можно читать онлайн Александр Китайгородский - Физика для всех. Книга 3. Электроны - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1979. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Китайгородский - Физика для всех. Книга 3. Электроны краткое содержание

Физика для всех. Книга 3. Электроны - описание и краткое содержание, автор Александр Китайгородский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех».
В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул.
В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества.
Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.

Физика для всех. Книга 3. Электроны - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для всех. Книга 3. Электроны - читать книгу онлайн бесплатно, автор Александр Китайгородский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

σ= ne 2∙ l/ mv

Если считать, что каждый атом отдает в общее пользование один электрон, то получится, что проводник имеет удельное сопротивление порядка 10 -5Ом∙м. Очень разумная величина! Она подтверждает как справедливость грубой модели, так и правильность выбора значения параметров нашей «теорий». Я ставлю слово «теория» в кавычки лишь по той причине, что она груба и элементарна. Однако этот пример иллюстрирует типичный физический подход к истолкованию явлений.

Согласно теории свободного электронного газа электрическое сопротивление должно уменьшаться с падением температуры. Только не торопитесь связывать это обстоятельство с изменением хаотической скорости движения электронов. Дело не в ней. Эта скорость мало зависит от температуры. Уменьшение сопротивления связано с тем, что размах колебаний атомов становится меньше, а благодаря этому растет длина свободного пробега электронов.

Этот же факт можно передать и такими словами: при увеличении амплитуд колебания атомов электроны в большей степени рассеиваются в разные стороны. Конечно, благодаря этому слагающая скорости в направлении тока должна уменьшиться, т. е. сопротивление должно возрасти.

Увеличением рассеяния электронов объясняют также возрастание сопротивления металла (и не только металла) с добавлением примесей. Действительно, примесные атомы играют роль дефектов кристаллической структуры и следовательно способствуют рассеянию электронов.

Электрическая энергия передастся по проводам. Из-за электрического сопротивления провода забирают энергию у источника тока. Потери эти огромны, и борьба с ними представляет собой важнейшую техническую задачу.

Есть надежда, что эта задача может быть решена, ибо существует замечательное явление сверхпроводимости.

Голландским физиком Камерлинг-Оннесом в 1911 г. было обнаружено, что при температурах, близких к абсолютному нулю, некоторые тела скачком теряют практически полностью свое электрическое сопротивление. Если в кольце сверхпроводника возбудить электрический ток, то он будет течь в проводнике сутками, не затухая. Из чистых металлов наиболее высокой температурой, при которой проявляются сверхпроводящие свойства, обладает ниобий (9 К). Не приходится и говорить, сколь настойчиво занят огромный отряд ученых поиском сверхпроводников, которые приобрели бы это замечательное свойство при более высокой температуре. Пока что успехи не очень велики. Найден сплав, который как будто становится сверхпроводящим при температуре около 20 К.

Однако есть основания полагать, что этот предел можно будет повысить (а может быть и довести до комнатных температур). Поиск ведется среди особых полимерных веществ, среди сложных слоистых материалов, в которых диэлектрик чередуется с металлом. Трудно переоценить значимость этой проблемы. Я беру на себя смелость считать ее одной из важнейших проблем современной физики.

Работы по поиску сверхпроводников, приобретающих это свойство при достаточно высоких температурах, приняли большой размах после того, как была построена теория этого явления. Теория подсказала пути поиска нужных материалов.

Характерно, что между открытием явления и его объяснением прошло очень много времени. Теория была создана в 1957 г. Надо отметить, что законы квантовой физики, с помощью которых построена теория сверхпроводимости, были установлены еще в 1926 г. Из этого следует, что объяснение явления было далеко не простым. В этой книжке я могу лишь дать объяснение, так сказать, с середины истории. Оказывается, что по мере замедления колебаний атомной решетки некоторым электронам удается «спариться». Такая «пара» ведет себя согласованно. Когда происходит рассеяние пары на атомах (а именно это рассеяние и есть, как мы говорили выше, причина сопротивления), то отскакивание одного из членов пары в сторону компенсируется поведением его «друга». Компенсируется в том смысле, что суммарный импульс пары электронов остается неизменным. Таким образом, рассеяние электронов не исчезает, но перестает влиять на прохождение тока.

Наряду со спаренными электронами в сверхпроводнике существует и обычный электронный газ. Таким образом, одновременно существуют как бы две жидкости — одна обычная, другая сверхпроводящая. Если температура сверхпроводника начинает повышаться от нуля, то тепловое движение будет разрывать все большее число «пар» электронов — доля обычного электронного газа будет расти. Наконец наступит критическая температура, при которой исчезнут последние спаренные электроны.

С помощью модели двух жидкостей, обычной и особенной, мы объяснили во второй книге явление сверхтекучести, наблюдаемое в жидком гелии. Эти два явления находятся в близком родстве: сверхпроводимость — это сверхтекучесть электронной жидкости.

Пара электронов, о которой мы только что сказали, имеет суммарный спин нуль. Частицы, спин которых равен нулю или целому числу, называются бозонами. При известных условиях бозоны могут собираться в больших количествах на одном и том же энергетическом уровне. В этом случае их движение становится идеально согласованным и их перемещению ничто не может помешать. Мы еще вернемся к этому явлению в четвертой книге.

ВЫХОД ЭЛЕКТРОНОВ ИЗ МЕТАЛЛА

Поскольку часть электронов ведет себя наподобие газа быстрых частиц, то естественно ожидать, что электроны способны выбираться за поверхность металла. Для того чтобы электрон покинул металл, ему надо преодолеть силы притяжения положительных ионов. Работа, которую электрону приходится затратить для достижения этой цели, называют работой выхода.

Чем выше температура металла, тем больше кинетическая скорость движения электронов. Если металл раскалить, то покинуть его удастся заметному числу электронов.

Исследовать явление термоэлектронной эмиссии — так называют выход электронов из металла — можно с помощью простого опыта. В электрическую лампу впаивается дополнительный электрод. Чувствительным прибором можно измерить величину электрического тока, который будет возникать из-за того, что часть «испаряющихся» электронов попадет на электрод (часть, а не все, по той причине, что электроны вылетают из нити лампы под разными углами).

Если мы хотим оценить работу выхода, то следует прибегнуть к «заградительному» напряжению, т. е. подвести к впаянному электроду отрицательный полюс аккумулятора. Постепенно повышая напряжение, мы доберемся до такого его значения, при котором электронам уже не удастся достигнуть электрода.

Работа выхода электронов для вольфрама равняется примерно 5 электрон-вольтам. Можно, если требуется, специальными покрытиями снизить эту работу до значения одного электрон-вольта.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Китайгородский читать все книги автора по порядку

Александр Китайгородский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для всех. Книга 3. Электроны отзывы


Отзывы читателей о книге Физика для всех. Книга 3. Электроны, автор: Александр Китайгородский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x