Александр Китайгородский - Физика для всех. Книга 3. Электроны

Тут можно читать онлайн Александр Китайгородский - Физика для всех. Книга 3. Электроны - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1979. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Китайгородский - Физика для всех. Книга 3. Электроны краткое содержание

Физика для всех. Книга 3. Электроны - описание и краткое содержание, автор Александр Китайгородский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех».
В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул.
В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества.
Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.

Физика для всех. Книга 3. Электроны - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для всех. Книга 3. Электроны - читать книгу онлайн бесплатно, автор Александр Китайгородский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В полном согласии с опытом, решение уравнений Максвелла приводит к заключению, что всегда возможно мыслить электромагнитное излучение как сумму волн разных длин и интенсивностей. Если излучающая система представляет собой электрический ток строго фиксированной частоты, то излучение будет «монохроматической» (одноцветной) волной.

Электромагнитная волна изображена на рис. 5.3.

Чтобы представить себе изменения которые происходят в пространстве при - фото 48

Чтобы представить себе изменения, которые происходят в пространстве при распространении электромагнитной энергии, надо «потянуть» наше изображение, как жесткое целое, в направлении оси абсцисс.

Эта картинка есть результат решения уравнений Максвелла. Она и позволяет нам говорить об электромагнитных волнах. Однако, пользуясь этим термином и прибегая к аналогии электромагнитной водны и волны, распространяющейся в воде от брошенного камня, надо действовать с превеликой осторожностью.

Наглядные картинки легко могут ввести в заблуждение. Волна на воде является лишь моделью электромагнитной волны. Это значит, что лишь в некоторых отношениях электромагнитные волны и волны на воде ведут себя одинаково.

Но ведь рисунок 5.3, на котором изображена электромагнитная волна, как две капли воды похож на морскую волну, которая то поднимает вверх, то опускает вниз брошенную в море щепку?.. Да ничего подобного! Вдумайтесь в сущность рисунка. По вертикальной оси отложен вектор электрического поля, а вовсе не пространственное смещение!

Каждая точка на горизонтальной оси показывает, что если бы в точку поместить электрический заряд, то на него-действовала бы сила, которая изображена величиной ординаты. При путешествии электромагнитной волны, собственно говоря, ничего со своих мест не сдвигается. А провести опыт, который наглядно продемонстрировал бы вам, как в той или иной точке меняется значение электромагнитной волны, практически совершенно невозможно даже для очень медленных колебаний.

Так что представления об электромагнитной волне носят теоретический характер. Мы уверенно говорим о существовании электромагнитной волны по той причине, что слушаем радио. Мы нисколько не сомневаемся, что электромагнитная волна обладает определенной частотой, потому что для приема той или иной станции надо настроить приемник на определенную частоту. Мы уверены, что понятие длины применимо к электромагнитной волне, не только по той причине, что мы можем измерить скорость волны и вычислить длину при помощи уравнения c= νλ, которое связывает частоту, длину волны и скорость ее распространения, но также и потому, что мы можем судить о длине электромагнитной волны, изучая явления дифракции, т. е. огибания препятствий, причём принципы этого измерения те же, что и для волн, распространяющихся на воде.

Предупредить читателя не стремиться к тому, чтобы представить себе электромагнитную волну наглядно, совершенно необходимо, ибо, как было сказано в начале параграфа, электромагнитное излучение «похоже» не только на волну, оно в ряде случаев «напоминает» нам поведение потока частиц. Представить себе нечто, похожее одновременно и на поток частиц, и на волну, — вот это уже совершенно невозможно. Речь идет о физических процессах, которые не могут быть изображены мелом на чертежной доске. Это, конечно, не означает, что мы не можем исчерпывающим образом познать электромагнитное поле. Надо только помнить, что наглядные картинки являются лишь учебным пособием, способом для лучшего запоминания знаков. Но не забывать, что волновая картина является лишь моделью электромагнитного излучения. Не более Того! Там, где это годится, мы этой моделью пользуемся, но нас нисколько не должно удивлять, что в иных случаях эта модель введет нас лишь в заблуждение.

Так же точно и корпускулярный аспект электромагнитного поля наблюдается не всегда. Было бы, конечно, легче жить, если бы условия, в которых эти два аспекта проявляются, были бы взаимно исключающими. Но нет. Дело обстоит не так. Даже описывая один и тот же эксперимент, зачастую приходится говорить одновременно на двух языках.

Все же более просто (а впрочем, лучше сказать — раньше было проще) наблюдать корпускулярный аспект электромагнитного излучения в случае коротких волн. В ионизационной камере и других аналогичных приборах можно наблюдать столкновение частицы электромагнитного излучения с электроном или иной «честной» частицей. Столкновение может происходить так, как встреча биллиардных шаров. Понять такое поведение, привлекая на помощь волновой аспект электромагнитного излучения, совершенно невозможно.

Рассмотрим возникновение электромагнитного излучения на языке теории Максвелла. Система зарядов колеблемся с какой-то частотой. В такт этим колебаниям меняется электромагнитное поле. Частота колебаний поля v, поделенная на скорость распространения 300 000 км/с, дает нам значение длины волны излучения.

Если перейти на язык квантовой физики, то это же явление будет описано следующим образом. Имеется система зарядов, для которой характерна система дискретных уровней энергии. По какой-то причине эта система пришла в возбужденное состояние, но в этом состоянии прожила недолго и перешла на более низкий уровень. Выделившаяся при этом энергия E 2— E 1= hvизлучается в виде частицы, носящей название фотона. С постоянной h мы уже знакомы (стр. 100). Это та же постоянная Планка.

Если уровни энергии системы расположены очень близко друг к другу, то фотон обладает малой энергией, малой частотой и, следовательно, большой длиной волны. В этом случае квантовый корпускулярный аспект электромагнитного поля мало заметен и обнаруживает себя лишь в явлениях поглощения, связанных с очень малыми изменениями энергии электронов или атомных ядер (магнитный резонанс). Столкновений фотона с частицами, подобных удару биллиардных шаров, в случае волн большой длины наблюдать не удается.

Расскажем вкратце о тех фактах, которые, так сказать, приперли физиков к стене и заставили согласиться с тем, что волновая теория, (в которую уже много десятков лет верили, как в полную и исчерпывающую истину) не в состоянии объяснить все факты, касающиеся электромагнитных полей. Фактов таких очень много, но пока что мы ограничимся явлением, которое носит название фотоэлектрического эффекта. После того как читатель согласится с тем, что без корпускулярного аспекта картина электромагнитного поля не может быть создана, мы обратимся к замечательным опытам Герца, из которых выросла вся радиотехника, и покажем, каким образом волновой аспект электромагнитного поля был обрисован не только в общих чертах, но и в деталях.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Китайгородский читать все книги автора по порядку

Александр Китайгородский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для всех. Книга 3. Электроны отзывы


Отзывы читателей о книге Физика для всех. Книга 3. Электроны, автор: Александр Китайгородский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x