Александр Китайгородский - Физика для всех. Книга 3. Электроны

Тут можно читать онлайн Александр Китайгородский - Физика для всех. Книга 3. Электроны - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1979. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Китайгородский - Физика для всех. Книга 3. Электроны краткое содержание

Физика для всех. Книга 3. Электроны - описание и краткое содержание, автор Александр Китайгородский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех».
В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул.
В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества.
Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.

Физика для всех. Книга 3. Электроны - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для всех. Книга 3. Электроны - читать книгу онлайн бесплатно, автор Александр Китайгородский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Этим способом ведут самолет на посадку в условиях отсутствия видимости. Такая задача может быть возложена и на человека, и на автомат.

Радиолокатор можно «обмануть». Во-первых, объект можно закрыть материалами, которые поглощают радиоволны. Для этой цели годятся угольная пыль, каучук. При этом вдобавок, чтобы уменьшить коэффициент отражения, покрытия выполняют гофрированными, заставляя таким методом львиную долю излучения рассеиваться беспорядочно во все стороны.

Если с самолета сбрасывать пачками полоски алюминиевой фольги или металлизированного волокна, то радиолокатор будет полностью дезориентирован. Впервые этот прием применили англичане еще во время второй мировой войны. Наконец, третий способ состоит в том, чтобы заполнить эфир ложными радиосигналами.

Радиолокация — интереснейший раздел техники, находящий широкое применение для многих мирных целей и без которого сейчас невозможно мыслить средства обороны.

Соперником радиолокатора является лазер. Принципы локации объектов с помощью лазера не отличаются от описанных выше.

Радиолокационные принципы лежат в основе связи между космическими кораблями и Землей. Радиотелескопы расположены так, чтобы не терять корабль из вида. Их антенны имеют огромные размеры до сотен метров. Нужда в таких больших антеннах объясняется необходимостью послать очень сильный сигнал и принять слабый сигнал от радиопередатчика. Естественно, что очень важно иметь узкий радиолуч. Если антенна работает на частоте 2,2 миллиарда колебаний в секунду (длина волны около 1 см), то на расстоянии до Луны луч размывается всего лишь до диаметра в 1000 км. Правда, когда луч доберется До Марса (300 миллионов километров), то его диаметр уже будет равен 700 000 км.

ТЕЛЕВИДЕНИЕ

Поскольку 99 читателей из 100 ежедневно проводят час-другой около телевизора, было бы несправедливо не сказать несколько слов об этом великом изобретении. Сейчас речь пойдет лишь о принципах телевизионной передачи.

Идея передачи изображения на расстояние сводится к следующему. Передаваемое изображение разбивается на мелкие, квадраты. Физиолог подскажет, каков должен быть размер квадрата, чтобы глаз перестал замечать изменения яркости внутри этого изображения. Световая энергия каждого участка изображения может быть при помощи фотоэлектрического эффекта преобразована в электрический сигнал. Надо придумать способ, каким образом считывать эти сигналы. Конечно, это проводится в строго определенной последовательности, как при чтении книги. Эти электрические сигналы накладываются на несущую электромагнитную волну совершенно таким же способом, как это делается при радиопередаче. И далее события разыгрываются вполне тождественно радиосвязи. Модулированные колебания усиливаются и детектируются. Телевизор должен преобразовать электрические импульсы в видимое изображение.

Передающие телевизионные трубки носят название супериконоскопа, суперортикона и видекона. С помощью линзы изображение проектируется на фотокатод. Наиболее распространенными фотокатодами являются кислородно-цезиевый и сурьмяно-цезиевый. Фотокатод монтируется в вакуумном баллоне вместе с фотоанодом.

В принципе можно было бы передавать изображение, поочередно проектируя световой поток от каждого элемента изображения. В этом случае фототок должен протекать только в течение короткого времени, пока длится передача каждого элемента изображения. Однако такая работа была бы неудобна, и в передающей трубке, используется не один фотоэлемент, а большое их количество, равное числу элементов, на которое разлагается передаваемое изображение. Эта приемная пластинка называется мишенью и выполняется в виде мозаики.

Мозаика — это топкая пластинка слюды, с одной стороны которой нанесено большое количество изолированных крупинок серебра, покрытых окисью цезия. Каждое зернышко — фотоэлемент» С другой стороны слюдяной пластинки нанесена металлическая пленка. Между каждым зерном мозаики и металлом как бы образуется маленький конденсатор, который заряжается электронами, выбитыми из катода. Ясно, что заряд каждого конденсатора будет пропорционален яркости соответствующего места передаваемого изображения.

Таким образом, на металлической пластинке возникает как бы скрытое электрическое изображение предмета. Как же снять его с этой пластинки? С помощью электронного луча, который надо заставить обегать пластинку так, как глаз скользит по строкам книги. Электронный луч играет роль ключа, замыкающего на мгновение электрическую цепь через микроконденсатор. Ток в этой мгновенно созданной цепи будет однозначно связан с яркостью изображения.

Каждый сигнал может и должен быть усилен во много раз обычными способами, применяемыми в радиотехнике. При передаче изображения глаз не должен замечать того, что электронный луч последовательно обегает разные точки светящегося экрана. Полное изображение, полученное на экране приемной трубки за один цикл движения электронного луча, называется кадром. Необходимо создать такую частоту смены кадров, чтобы за счет инерционности зрения не наблюдалось мелькание яркости.

Какую же надо взять частоту смены кадров? Выбрать надо число, связанное с частотой тока в сети. Дело в том, что пульсирующее напряжение, которое приложено к сетке электронно-лучевой трубки, создает на экране темные и светлые полосы. Если частота смены кадров будет равна или кратна частоте сети, то только в этом случае полосы будут неподвижны и незаметны. Слитность движения возникает при частоте смены кадров около 20 Гц, поэтому частота смены кадров в телевидении принята 25 Гц, но при этой частоте мелькание яркости еще заметно. Брать частоту кадров 50 Гц нежелательно, поэтому техники прибегли к следующему занятному приему: они воспользовались чересстрочной разверткой. Оставлена частота 25 Гц, но электронный луч прочерчивает сначала нечетные строки, а затем четные. Частота смены полукадров становится-равной 50 Гц и мелькание яркости изображения становится незаметным.

Частоты кадровой и строчной разверток должны быть строго синхронизированы. Здесь нет места входить в технические детали, поэтому мы не станем объяснять, что эта синхронизация требует, чтобы число строк было нечетным и состояло из нескольких целых сомножителей. В нашей стране принято делить кадр на 625 строк, т. е. 5 4; поскольку в одну секунду сменяется 25 кадров, частота строк становится 15 625 Гц. Из этого условия вытекает ширина спектра частот телевизионного сигнала.

Низшая частота 50 Гц — частота полукадра. А высшая частота определяется временем для передачи одного элемента.

Довольно простой расчет, которого мы здесь не будем приводить, показывает, что высшую частоту приходится взять равной 6,5 МГц. Отсюда следует, что несущая частота передатчика не может быть меньше 40–50 МГц, поскольку частота несущей волны должна быть по крайней мере в 6–7 раз больше ширины полосы передаваемых частот. Теперь вам понятно, почему для телевизионных передач могут быть использованы только ультракороткие волны и почему, следовательно, дальность телепередачи ограничена прямой видимостью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Китайгородский читать все книги автора по порядку

Александр Китайгородский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для всех. Книга 3. Электроны отзывы


Отзывы читателей о книге Физика для всех. Книга 3. Электроны, автор: Александр Китайгородский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x