Лоуренс Краусс - Страх физики. Сферический конь в вакууме
- Название:Страх физики. Сферический конь в вакууме
- Автор:
- Жанр:
- Издательство:Питер
- Год:2016
- Город:СПб.
- ISBN:978-5-496-02066-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лоуренс Краусс - Страх физики. Сферический конь в вакууме краткое содержание
Страх физики. Сферический конь в вакууме - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Существует несколько очень больших чисел, характеризующих видимую Вселенную, как то: ее возраст, размер, количество элементарных частиц в ней и так далее. Есть также несколько подозрительно малых чисел, как, например, относительная величина силы гравитационного взаимодействия. Дирак предположил, что, возможно, сила гравитационного притяжения изменяется по мере расширения Вселенной, ослабевая со временем! Это естественным образом могло бы объяснить, почему гравитация сегодня настолько слаба по сравнению с другими фундаментальными взаимодействиями. Вселенная попросту стара!
С тех пор как Дирак выдвинул свою гипотезу, предпринималось множество как прямых, так и косвенных попыток проверить, меняется ли со временем сила тяжести или другие фундаментальные взаимодействия. В результате были установлены очень жесткие ограничения на возможные изменения фундаментальных констант, и убедительных признаков их изменения обнаружено не было. Правда, одна исследовательская группа, основываясь на наблюдениях спектров удаленных галактик, показала, что сила электромагнитного взаимодействия, возможно, изменилась за последние 10 миллиардов лет на 1/100 000, но в настоящее время нет независимых подтверждений этих результатов, которые, по мнению многих физиков, могут объясняться сложными взаимодействиями излучающих атомов. С другой стороны, наблюдаемое количество легких элементов, образовавшихся в момент Большого взрыва, хорошо совпадает с теоретическими предсказаниями, сделанными с использованием сегодняшних значений фундаментальных констант. Это, в частности, означает, что сила гравитации могла измениться не более чем на 20% за 13 с лишним миллиардов лет, прошедших с того момента, когда Вселенной была всего лишь одна секунда от роду! Таким образом, насколько мы можем судить, сила гравитации со временем не меняется.
Тем не менее, даже если законы микромира как-то связаны с макроскопическим состоянием Вселенной, мы все равно могли бы ожидать, что основные физические принципы, связывающие законы микромира с состоянием Вселенной, будут оставаться неизменными. А в этом случае у нас всегда остается возможность обобщить наше определение энергии так, чтобы она по-прежнему сохранялась. В конце концов, мы вольны подразумевать под энергией нечто, отличное от того, что подразумеваем сегодня, обобщив это представление на случаи больших и малых масштабов. Но это нечто, которое мы теперь будем называть словом «энергия», по-прежнему будет сохраняться до тех пор, пока указанные принципы не меняются с течением времени.
Концепция энергии неоднократно пересматривалась в истории физики. Наиболее яркий пример предоставляет нам теория относительности. Напомню, что в теории относительности разные наблюдатели могут получать различные, но одинаково правомочные результаты измерения физических величин. Результаты этих измерений должны рассматриваться исключительно в привязке к конкретному наблюдателю, но не как абсолютные значения.
Описывая Вселенную в целом или описывая систему, в которой гравитационные эффекты очень сильны, мы должны использовать обобщенное понятие энергии, согласующееся с искривленным пространством-временем. Однако если мы рассматриваем процессы, происходящие на масштабах, которые малы по сравнению с размером видимой части Вселенной или вдали от сильных гравитационных полей, то локальная кривизна пространства-времени оказывается небольшой. В этом случае мы можем использовать традиционное определение энергии. Это, в свою очередь, демонстрирует мощь закона сохранения энергии в космических масштабах, закона, который определяет судьбу Вселенной.
Как сказал Исаак Ньютон, «все, что поднимается, должно падать». Не желая оскорбить мэтра, все же следует заметить, что это неверно. Мы знаем из опыта, что космическому аппарату можно придать такую скорость, что он никогда не упадет обратно на Землю. Существует определенная, одинаковая для любого тела скорость, необходимая для того, чтобы тело навсегда улетело от Земли. Если бы это было не так, американская лунная программа оказалась бы гораздо более сложной, поскольку в конструкции космического корабля пришлось бы явным образом учитывать вес каждого астронавта. За существование такой универсальной скорости убегания отвечает закон сохранения энергии.
Мы можем разбить энергию любого тела, движущегося в гравитационном поле Земли, на две части. Первая часть зависит от скорости тела. Чем быстрее оно летит, тем больше энергия его движения, называемая кинетической энергией — от греческого слова κινησις — движение. Покоящиеся тела обладают нулевой кинетической энергией. Вторая часть энергии, которую тело может иметь в гравитационном поле, называется потенциальной энергией. Если рояль висит на веревке на высоте пятнадцатого этажа, мы знаем, что он имеет большой потенциал причинить нам неприятности. Чем выше что-то поднято над землей, тем больше его потенциальная энергия и тем более серьезными могут быть потенциальные последствия его падения.
Чаще всего потенциальная энергия двух взаимодействующих тел представляется отрицательным числом. Это просто соглашение, но за ним стоят практические соображения. Логично считать, что покоящееся тело, находящееся на бесконечном удалении от Земли или любого другого массивного тела, обладает нулевой полной энергией. Так как кинетическая энергия покоящегося тела равна нулю, его потенциальная энергия также должна быть нулевой. Но поскольку при приближении к притягивающему объекту потенциальная энергия тела уменьшается, то она должна становиться все более и боле е отрицательной, по мере того как расстояние между телом и притягивающим объектом уменьшается.
Если мы будем придерживаться этого соглашения, то две части полной энергии любого тела, движущегося в гравитационном поле, например вблизи поверхности Земли, будут иметь противоположные знаки: одна будет положительной, другая отрицательной. Мы можем затем задаться вопросом, является ли их сумма положительной или отрицательной. Это важнейший вопрос. Если энергия сохраняется, то тело, полная энергия которого отрицательна, никогда не сможет покинуть околоземное пространство. Смотрите: если тело улетает «на бесконечность» и там замедляется до полной остановки, это означает, что его полная энергия равна нулю. Ноль больше любого отрицательного числа, и это значит, что если полная энергия тела отрицательна, то на конечном расстоянии от Земли оно остановится и начнет падать обратно. Если полная энергия тела изначально отрицательна, то она не может стать ни нулевой, ни положительной — так требует закон сохранения энергии. Скорость, при которой первоначальная (положительная) кинетическая энергия в точности равна (отрицательной) потенциальной энергии, так чтобы полная энергия была равна нулю, это и есть вторая космическая скорость. Тело, обладающее второй космической скоростью, способно удалиться от Земли на бесконечное расстояние. Поскольку обе формы энергии прямо пропорциональны массе тела, то вторая космическая скорость оказывается не зависящей от его массы. Например, вторая космическая скорость на поверхности Земли равна 11,2 км/с.
Читать дальшеИнтервал:
Закладка: