Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Название:Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Автор:
- Жанр:
- Издательство:Мир
- Год:1970
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия краткое содержание
Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Скрытая теплота
Опыт с нагреванием снега (или демонстрация, заменяющая его) показывает, что теплота не всегда ведет к нагреванию, иногда она тратится на плавление или испарение, причем в таких случаях температура не меняется. Мы считаем, что тепловая энергия уходит на отрыв молекул от твердого кристалла или на пополнение кинетической энергии, унесенной быстрыми испарившимися молекулами. «Пропавшее» тепло мы называем скрытым .
Опыты показывают, что для того, чтобы растопить 1 кг льда без изменения температуры, требуется 80 Кал. А чтобы превратить в пар 1 кг воды при 100 °C, требуется 540 Кал. Список тепловых расходов для превращения в пар 1 кг льда, взятого первоначально при температуре, скажем, — 10 °C, выглядит следующим образом:
Нагревание льда до точки таяния (поскольку удельная теплоемкость льда = 0,5)… 5 Кал
Плавление льда при температуре 0 °C (превращение твердого тела в жидкость без изменения температуры)… 80 Кал
Нагревание растаявшего льда до точки кипения… 100 Кал
Выкипание воды при 100 °C (без изменения температуры)… 540 Кал
Обратите внимание, насколько трудно отрывать молекулы от жидкости и превращать ее в пар. Превращение льда в кипяток обходится в 185 Кал, а выкипание берет почти в 3 раза больше. При конденсации пара теплоты выделяется гораздо больше, чем при охлаждении горячей воды: ожог паром гораздо тяжелее, нежели крутим кипятком.
Задача 2. Теплота превращения воды в пар
Электрокипятильник, работая 2 мин, нагревает 10 кг воды в баке от 20,0 до 22,6 °C. Тот же кипятильник при том же потреблении энергии был опущен на 2 мин в термос с кипящей водой. После этого термос, который вначале весил 2,000 кг, стал весить 1,950 кг.
а) Сколько теплоты выделил нагреватель за 2 мин?
б) Сколько воды выкипело?
в) Оцените теплоту выкипания 1 кг воды [185].
г) Каков, по-вашему, получится ответ на предыдущий вопрос — завышенный или заниженный? Почему?
Фиг. 70. К задаче 2.
Задача 3. Теплота конденсации пара
Бак содержит 5,00 кг воды при 18 °C. Из большого кипятильника в бак через трубу поступает горячий пар и нагревает воду до 30 °C. После этого в баке оказывается 5,10 кг воды.
а) Какова масса сконденсировавшегося пара?
б) Сколько теплоты получили 5,00 кг воды?
в) Предположим, что холодная вода приобрела теплоту от пара, который сконденсировался и охладился до 30 °C. Сколько теплоты выделит 1 кг пара при такой конденсации и охлаждении?
г) Сколько теплоты выделил бы 1 кг воды при охлаждении от 100 до 30 °C?
д) Оцените теплоту конденсации 1 кг пара без изменения температуры.
е) Будет ли эта ваша оценка завышена или занижена? (Рассмотрите две возможные причини: первая — потери тепла и вторая — капли воды, принесенные паром и включенные в вес пара, дают меньшее тепловыделение.)
Задача 4. Теплота плавления льда
В большом куске льда выдолблено углубление и внутренность осушена губкой. Быстро нальем туда 2,0 кг воды, при температуре 50 °C. Вода перемешивается до тех пор, пока не охладится до 0 °C. Затем вся вода в углублении тщательно собирается и взвешивается. Ее вес равен 3,25 кг. Сколько теплоты пошло на то, чтобы лед растаял? Сколько ее требуется для того, чтобы растаял 1 кг льда?

Фиг. 71. К задаче 4.
Теплота и энергия
Сжатие нагревает газ — сообщает ему теплоту, хотя, если вас спросят: «Что делает с молекулами движущийся поршень?», вы ответите: «Он просто заставляет их двигаться быстрее». Таким образом, теплота, по-видимому, связана с молекулярным движением в газе. Она появляется и в тех случаях, когда куют мягкий металл или трут друг о друга неровные поверхности. Во всех случаях теплоту можно приписать движению атомов и молекул. Тщательные измерения показывают, что механическая энергия и теплота взаимопревращаемы с фиксированным «обменным курсом». В результате мы приходим к выводу, что теплота — это одна из форм энергии. Исследованию теплоты и ее связи с другими формами энергии посвящена гл. 29 .
Термометры и температура
Вопрос «Что такое шкала температур?» — годится для любого физика — от студента до профессора. Полный ответ на него занял бы целую книгу и мог бы послужить хорошей иллюстрацией изменения взглядов и прогресса физики за последние четыре века.
Температура — это степень нагретости по определенной шкале. Для грубой оценки, без термометра, можно воспользоваться чувствительностью собственной кожи, но наши ощущения тепла и холода ограничены и ненадежны.
Опыт 6. Чувствительность кожи к теплу и холоду. Этот опыт весьма поучителен. Поставьте три тазика с водой: один с очень горячей, другой с умеренно теплой, а третий с очень холодной. Опустите минуты на 3 одну руку в горячий, а другую в холодный таз. Затем обе руки опустите в таз с теплой водой. Теперь спросите-ка каждую руку, что она «скажет» вам о температуре воды?
Фиг. 72. Что «скажут» руки?
Термометр точно говорит нам, насколько вещь горячее или холоднее; с его помощью можно сравнить степень нагретости разных предметов, пользуясь им вновь и вновь, мы можем сопоставить наблюдения, сделанные в разное время. Он снабжен определенной неизменной, воспроизводимой шкалой — характерной принадлежностью любого хорошего прибора. Способ изготовления термометра и сам прибор диктуют нам ту шкалу и систему измерений, которой мы должны пользоваться. Переход от грубых ощущений к прибору со шкалой — не просто усовершенствование нашего осязания. Мы изобретаем и вводим в употребление новое понятие — температуру.
Наше грубое представление о горячем и холодном содержит в зародыше понятие температуры. Исследования показывают, что при нагревании многие из важнейших свойств вещей изменяются, и для изучения этих изменений нужны термометры. Повсеместное распространение термометров в обиходе отодвинуло на второй план смысл понятия температуры. Мы считаем, что термометр измеряет температуру нашего тела, воздуха или воды в ванне, хотя на самом деле он показывает лишь свою собственную температуру. Мы считаем изменения температура от 60 до 70° и от 40 до 50° одинаковыми. Однако никаких гарантий того, что они действительно одинаковы, у нас, по-видимому, нет. Нам остается считать их одинаковыми по определению Термометры все же полезны нам как верные слуги. Но действительно ли за их преданным «лицом» — шкалой скрыта Ее Сиятельство Температура.
Простые термометры и шкала Цельсия
Температуру в термометрах показывает расширяющаяся при нагревании капелька жидкости (ртути или окрашенного спирта), помещенная в трубку с делениями. Чтобы шкала одного термометра совпадала с другой, мы берем две точки: таяние льда и кипение воды в стандартных условиях и приписываем им деления 0 и 100, а интервал между ними делим на 100 равных частей [186]. Итак, если по одному термометру температура воды в ванне равна 30°, то любой другой термометр (если он правильно проградуирован) покажет то же самое, даже если у него пузырек и трубка совсем другого размера. В первом термометре ртуть расширяется на 30/100 расширения от точки плавления до точки кипения. Разумно ожидать, что и в других термометрах ртуть будет расширяться в той же степени и они также покажут 30°. Здесь мы полагаемся на Универсальность Природы [187].
Читать дальшеИнтервал:
Закладка: