Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Название:Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Автор:
- Жанр:
- Издательство:Мир
- Год:1970
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия краткое содержание
Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Итак, 1 килокалория — это количество тепла, необходимое для нагревания 1 кг воды на 1 °C. Если мы используем эти единицы теплоты, то наше прaвило кажется разумным. Например, «Сколько теплоты требуется для нагревания 3 кг воды на 5 °C?» Нагревание каждого килограмма на 1 °C требует 1 Кал (по определению). Нагревание 1 кг на 5 °C требует 5 Кал. Нагревание же 3 кг на 5 °C требует в 3 раза больше, или 3x5=15 Кал. Итак, нагревание 3 кг на 5 °C требует 15 «единиц», каждая из которых нагревает 1 кг на 1 °C, или 15 Кал.
В общем случае нагревание М кг воды на Δ t градусов требует М ∙Δ t Кал. Это рассуждение молчаливо предполагает аддитивность теплоты, или количества топлива.
В качестве стандартного вещества, которому при измерении сообщается теплота, выбрана вода, так как она доступна и легко перемешивается. Чтобы выяснить, не ограничено ли наше правило только водой, повторим опыты с 1 кг другого вещества, скажем алюминия или глицерина. Умножение повышения температуры на массу материала , как и в случае воды, дает завышенный результат (для алюминия ответ получается больше в 5 раз). Чтобы добиться того же эффекта теплоты с другим веществом, мы должны, как и для воды, сначала перемножить массу и повышение температуры , а затем помножить это на особое, характерное для данного вещества число (для алюминия около 0,2), называемое удельной теплоемкостью . Удельная теплоемкость — очень полезная характеристика при тепловых расчетах, но мы не будем рассматривать ее здесь подробно [182]).
ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ
Опыт 2. Смешивание горячей и холодной воды. Проверим наше правило измерения теплоты в опыте с горячей и холодной водой — одним из первых опытов, которые привели к созданию методов измерения теплоты, или калориметрии. Нальем 0,3 кг холодной воды в один сосуд и 0,4 кг горячей воды в другой большой тонкостенный [183] сосуд. Тщательно перемешаем и измерим их температуры. Быстро выльем холодную воду в горячую, перемешаем и измерим окончательную температуру. В окончательной смеси холодная и теплая вода перемешались, но мы знаем, что их конечная температура — это температура 0.7 кг воды. Если теплота не исчезает, то следует ожидать, что горячая теряет, а холодная вода приобретает равные количества теплоты (со скидкой на потери теплоты). Вычислим повышение температуры холодной воды и понижение температуры горячей.
Равны ли они? Конечно, нет, ибо температура сама по себе не является мерой количества тепла. Попробуем воспользоваться произведением
МАССА ВОДЫ ∙ ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ.
Произведения не будут точно равны и противоположны, но это самое простое и удовлетворительное правило, и можно найти оправдание тому, что оно не выполняется совершенно точно.
Опыт 3. Измерение количества тепла.
1) Измерьте количество тепла, переданное кастрюле с водой при сжигании 1 см 3спирта.
2) Измерьте количество тепла, переданное кастрюле с водой бунзеновской горелкой за 1 мин работы.
Это очень простые, грубые опыты, но они позволят почувствовать масштаб Калории.
3) Если угодно, повторите опыты с различными массами воды или различными периодами нагревания.
В последнем случае найдите количество тепла, подведенное за 1 мин.
4) Сожгите 1 см 3спирта под большим куском алюминия. Допуская, что спирт передает одинаковое количество тепла как алюминию, так и кастрюле с водой, оцените удельную теплоемкость алюминия.
Если хотите, исследуйте различные сорта пламени горелки: желтое, коптящее, спокойное, ревущее. Исследуйте также температуру разных сортов пламени, использовав в качестве грубого индикатора кусочек железной проволоки или сгоревшую спичку.
В расчетах можно либо рассматривать воду как единственный объект полезного нагревания, либо учесть теплоту, отдаваемую кастрюле. В этом случае надо знать удельную теплоемкость материала, из которого она сделана.
Фиг. 68. Опыт 3.
Опыт 4 (факультативный). Оценка температуры пламени на основе калориметрии. Наряду с измерением теплоотдачи бунзеновской горелки оцените температуру ее пламени. Для этого поместите кусок железа, скажем большую железную гайку на железной проволоке, в пламя горелки. Когда гайка нагреется докрасна, бросьте ее в небольшую кружку с холодной водой (желательно с теплоизолирующим кожухом, чтобы ее можно было назвать «калориметром»). Тщательно измерьте начальную и конечную температуры. (Погружение гайки будет эффектной, но опасной операцией. Разумно сначала сделать грубые измерения, чтобы установить, сколько же нужно взять воды.)

Фиг. 69. Опыт 4.
Чтобы вычислить температуру пламени, познакомьтесь с задачей 1 , а величину удельной теплоемкости железа возьмите из других опытов.
Задача 1. Оценка температуры пламени (аналогично опыту 4, в большем масштабе.)
Кусок железа массой 2 кг нагрет в печи и брошен в ведро, содержащее 30 кг воды с температурой 15,0 °C. После перемешивания температура води стала 25,0 °C. Удельную теплоемкость железа в этой области температур примите равной 0,159.
а) Вычислите количество тепла, полученного водой.
б) Теплота, потерянная железом, равна
МАССА ∙ УМЕНЬШЕНИЕ ТЕМПЕРАТУРЫ ∙ УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ.
Подставьте в это выражение имеющиеся у вас данные.
в) Предположим, что количество тепла, потерянного железом, равно количеству тепла, полученному водой. Вычислите изменение температуры, железа.
г) Какую температуру печи это дает, заниженную или завышенную. Почему?
д) Будет ли такой опыт, но в большом масштабе более точным или менее точным, чем опыт в малом масштабе? Дайте обоснование вашего ответа. (Рассмотрите внимательно потери тепла.)
Опыт 5. Нагревание снега. (Если снега нет, то подойдет и измельченный лед.) Наполните снегом небольшую металлическую кружку. Положите в снег термометр и измерьте его температуру. Сообщите снегу некоторое количество тепла, сжигая под ним 1 см 3спирта [184].
Перемешивайте тающий снег до тех пор, пока показания термометра не начнут меняться. Запишите показание термометра. Сообщите затем кружке еще такое же количество тепла. Перемешайте содержимое кружки и измерьте температуру.
Продолжайте делать так, пока вода не станет теплой пли пока она не закипит. Очень важен перерыв после каждого нагрева, чтобы эффективное перемешивание успевало выравнивать температуру содержимого. На ранних стадиях на это потребуется минута или даже больше, потом хватит нескольких секунд, а в конце времени почти не потребуется. Нарисуйте график зависимости температуры от количества тепла . Какое заключение можно сделать из этого графика. ( Примечание. Можно надеяться на качественные и приближенные количественные выводы.)
Читать дальшеИнтервал:
Закладка: