Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Название:Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Автор:
- Жанр:
- Издательство:Мир
- Год:1970
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия краткое содержание
Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ изменение которой равно ( сила )∙( расстояние ) + КИНЕТИЧЕСКАЯ ЭНЕРГИЯ величина которой равна 1/ 2 mv 2
постоянна (для идеальных механических систем). Этот закон полезен для решения задач физики и техники. На деле он состоит из II и III законов Ньютона и предположения, что силы складываются как векторы. Поэтому он основан на эксперименте в той же степени, что и II закон: F= m∙ a. Это выявляет важную характеристику таких механических систем, о которой было известно уже в давние времена: изменение энергии при любых движениях не зависит от выбранного пути. Пусть, например, груз от двери сарая А переносится в дальний угол его чердака В . Как бы мы ни перемещали его:
— сначала подняли вверх, а потом переместили по горизонтали,
— сначала по горизонтали, а потом вверх,
— или вверх по наклонной плоскости,
— или по какой-то причудливой кривой (с помощью блоков),
— или даже сначала подняли над крышей, а затем опустили на чердак,
прирост потенциальной энергии ( E пот) будет тем же самым.
Чтобы показать, как это следует из закона сохранения энергии, рассмотрим перемещение из А в В по двум путям, причем будем начинать и кончать состоянием покоя, трением пренебрежем.
Перенесем груз из А в В по пути I , а затем назад по пути II . Возвратившись в начальную точку А , мы пришли к той же потенциальной энергии. Следовательно, затраты на путях I и II одинаковы. В противном случае мы могли бы создать вечный двигатель, перемещая груз вверх по одному пути, а вниз — по другому и получая при каждом цикле прирост энергии.
Поверив в сохранение энергии, мы видим, что правило Галилея о наклонной плоскости очевидно; каков бы ни был наклон, масса М , сталкиваемая с высоты h , теряет потенциальную энергию, равную Mgh , и приобретает кинетическую энергию, равную 1/ 2 mv 2. Если нет потерь на трение, то эти два изменения должны быть сбалансированы, Mgh= 1/ 2 mv 2. Тогда скорость v= √(2 gh) — одна и та же при любом наклоне высотой h , как отвесном, так и отлогом, как прямом, так и искривленном. Так что опыт Галилея был фундаментальной проверкой закона сохранения энергии .
Если математикам «дать» Солнце и планету при некотором начальном условии, то они смогут предсказать орбиту планеты. Один из наиболее простых способов — это написать уравнение, исходя из того, что сумма (кинетическая энергия) + (потенциальная энергия) (в изменяющемся гравитационном поле Солнца) вдоль орбиты остается постоянной. В комбинации с уравнением для другой сохраняющейся величины (например, момента количества движения) это приведет к уравнению для орбиты, т. е. к эллипсу [202].
Хотя закон сохранения энергии полезен, до сих пор он вряд ли был всеобщим. Включение же теплоты, химической энергии и др. в одну грандиозную схему привело к перерастанию его в важнейший закон.
Теплота как форма энергии
Лукреций (~ 80 г. до н. э.) так описывал взгляды греческих философов, живших за несколько веков до него [203]:
«… телам изначальным, конечно,
Вовсе покоя нигде не дано в пустоте необъятной.
Наоборот: непрерывно гонимые разным движеньем,
Частью далеко они отлетают, столкнувшись друг с другом,
Частью ж расходятся врозь на короткие лишь расстоянья.
Тех, у которых тесней их взаимная сплоченность, мало,
И на ничтожные лишь расстоянья прядая порознь,
Сложностью самых фигур своих спутанны будучи цепко,
Мощные корни камней и тела образуют железа
Стойкого, так же, как все остальное подобного рода.
Прочие в малом числе, в пустоте необъятной витая,
Прядают прочь далеко и далеко назад отбегают
На промежуток большой. Из них составляется редкий
Воздух…»
Воззрения греческих атомистов в течение многих веков либо предавались забвению, либо преследовались. Их идеи были возрождены только во времена Галилея. Причудливую теорию атомов строил Декарт, а Ньютон размышлял над теплотой как движением атомов. Философы последующего века создали грандиозные схемы применения могучей механики Ньютона к декартовым атомам. Они считали, что, задав положение и движение всех атомов, можно предсказать все, что произойдет в будущем. Но атомная картина все еще оставалась в рамках заумных рассуждений, а связь между теплотой и «атомным» движением была лишь внешней.
«Теплород»
В течение долгого времени после Ньютона представление о теплоте продолжало оставаться не слишком ясным. Примерно в 1750 г. Джозеф Блейк провел четкую грань между количеством тепла и температурой . Он измерял количество тепла, нагревая воду или растапливая лед. В последнем случае не требуется даже термометра — теплота измеряется по массе растаявшего льда. Он определил величину, которую мы теперь называем «удельной теплоемкостью», и построил теорию теплоты как некой жидкости, которая без потерь может перетекать из горячих тел в холодные. Даже когда кажется, что теплота исчезает при плавлении или испарении, она прячется в виде «скрытой теплоты», которая может быть выделена при обратном переходе.
Эта «жидкость» вскоре была названа флогистоном, или «теплородом». Нагревание тел означало наполнение пространства между атомами теплородом и увеличение его давления. Считалось, что между «атомами» воды, обладающей большой теплоемкостью, имеется много-свободного места. А в свинце с его малой теплоемкостью места для теплорода должно быть мало, небольшого количества его хватает, чтобы наполнить промежутки до высокой температуры. Было много споров о весе теплорода. Некоторые считали, что он обладает весом, другие же, убедившись в том, что нагретые тела легче, приписывали ему отрицательный вес. Наконец, Румфорд взвесил некое количество льда, нагрел его, пока не превратил в теплую воду, вновь взвесил и перемен не обнаружил. Однако это не опровергало существования теплорода, а лишь указывало на интересное его свойство — невесомость. К 1800 г. теория теплорода казалась хорошо экспериментально обоснованной. Она позволяла легко разбираться в нагревании, охлаждении, плавлении, испарении. Она объясняла даже расширение при нагревании: теплород раздвигал атомы, действуя на них силовыми полями, подобными тем, которые сейчас так популярны в атомной физике. Она с легкостью объясняла также нагревание вещества при трении. Соскальзывая вниз по канату, матрос выжимает из него теплород — говорили приверженцы теплорода? Они могли почти нарисовать картину, как руки человека выжимают теплоту из промежутков между атомами каната, подобно воде из мокрой губки. Но почему же теплород не возвращался обратно, когда матрос отпускал канат? «Да, не возвращается» — таков, по-видимому, был первый ответ. Разумеется, он не возвращается, ибо натертые предметы остаются горячими довольно долго и медленно передают тепло своему окружению. Суть дела в том, — следовали подробные объяснения, — что трение сдавливает канат, уменьшая в нем пространство для теплорода. Таким образом, теплород выжимается и обжигает человеку руки. Это изменение необратимо — в канате остается меньше места для теплорода.
Читать дальшеИнтервал:
Закладка: