Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Название:Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Автор:
- Жанр:
- Издательство:Мир
- Год:1970
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия краткое содержание
Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Глава 18. Иоганн Кеплер (1571–1630)
Кромешною тьмою окутан навечно,
Как в бездне витая во мраке Вселенной,
Хвалу я богам возношу бесконечно,
Что душу мою сохранили нетленной.
В. Хеши(1875 г.)
«…музыка есть повсюду, где есть гармония, порядок, пропорция, и до сих пор мы можем считать, что существует музыка сфер, так как упорядоченные движения и правильные интервалы, хотя и не воспринимаются слухом, но исполнены гармонии для нашего разума»,
Cэp Toмас Браун, Religio Medici (1642 г.)
Молодой немец Иоганн Кеплер, которому Тихо Браге оставил свои таблицы, вполне заслуживал такого доверия. Он стал одним из величайших ученых своего века, и равным ему, пожалуй, можно считать лишь Галилея, а позднее его смог затмить только Ньютон: Как указывает Оливер Лодж [41] Oliver Lodge , Pioneers of Sciencej, London, 1893.
, Тихо и Кеплер были поразительно разными: Тихо «аристократического происхождения, богатый, сильный, пылкий, обладающий талантами изобретателя и экспериментатора, но как теоретик и математик не выше среднего уровня». А Кеплер «бедный, болезненный, отнюдь не обладающий способностями как экспериментатор и склонностью к точным наблюдениям, но блестящий математик с тонкой интуицией». Работой Тихо интересовались короли, они оказывали ему покровительство и материальную поддержку (в течение некоторого периода довольно значительную). Жизнь Кеплера была полна лишений и неудач. Но обоих объединял глубокий интерес к астрономии и твердое решение осуществить поставленные перед собой задачи.
Кеплер родился в Германии в семье армейского офицера. Он был старшим сыном. Рос он слабым ребенком, сильно болел и часто жизнь его висела на волоске. Родители его были так бедны, что им пришлось открыть сельскую таверну, чтобы сводить концы с концами. Когда маленькому Иоганну исполнилось девять лет, его взяли из школы и до двенадцати лет он прислуживал в таверне. Затем он вернулся в школу, а потом поступил в университет, который благополучно окончил, считаясь вторым в своей группе. Тем временем отец его вернулся в армию, а мать перессорилась со всеми родственниками, включая и сына, который был счастлив удрать из дома. Сначала Кеплера не очень интересовала астрономия.
В университете он познакомился с теорией Коперника, стал ее сторонником, защищал ее во время университетских дискуссий и даже написал по поводу этой теории реферат. Но в то время его основные интересы лежали в области философии и религии, и он не уделял времени астрономии. Однако когда оказалась свободной вакансия лектора по астрономии, Кеплер, который в то время искал работу, скрепя сердце занял это место, заявив, что не оставляет надежды «получить возможность заняться более интересным делом». В те дни астрономия не пользовалась тем уважением, которое позднее сам Кеплер помог ей приобрести. Тем не менее он начал серьезно заниматься наукой, которую ему предстояло преподавать, и чем больше он изучал астрономию и думал о ней, тем больше увлекался и тем больше новых идей роилось в его голове. «Он был прирожденным мыслителем, подобно тому как Моцарт был прирожденным музыкантом», — говорит Лодж. Он должен был найти математическую схему, лежащую в основе планетной системы. Его беспокойный пытливый ум и пылкое воображение занимали задачи, связанные с числами и размерами [42] Большинство людей увлекается подобными загадками, хотя не столь пылко. Вам, вероятно, часто доставляло удовольствие решать задачи с последовательностями чисел, где вы пытались продолжить эти последовательности закономерным образом (проверка на сообразительность, различные головоломки). Попробуйте продолжить приведенные здесь последовательности. Если вам удастся это сделать и вы получите при этом удовольствие, вам станет до некоторой степени понятно то наслаждение, которое испытывал Кеплер при решении поставленных им перед собой задач. а) 1, 3, 5, 7, 9, 11…? б) 1, 4, 9, 16, 25…? в) 5, 6, 7, 10, 11, 12, 15, 16…? г) 2, 3, 4, 6, 8, 12, 14, 18…? д) 4, 7, 12, 19, 28…? е) 1 7 3 6 5 5 7 4 9…? ж) 0 1 8 8 1 1 0 2 4 1 5 6 2 5…? В последовательностях ( е ) и ( ж ) вы должны проставить запятые.
.
Как и Пифагор, «он был убежден, что бог создал мир в соответствии с принципом идеальных чисел и что поэтому лежащая в основе мироздания математическая гармония… является реальной и доступной пониманию причиной движения планет» [43] William Dampier , A History of Science, Cambridge, 1949.
. Сам Кеплер сказал: «Я размышлял над этим вопросом со всей энергией, на которую был способен мой ум».
Ум его пылал, он мучился вопросами: Почему существует только шесть планет? Почему их орбиты имеют именно такие пропорции и размеры? Связаны ли «периоды обращения» планет с размерами их орбит? Первый вопрос, «Почему именно шесть?», характерен для того времени. В наше время мы должны были бы искать седьмую планету. Но тогда казалось, что факты непреложны и что числа обладают магическими свойствами. В системе Птолемея насчитывалось семь планет (включая Солнце и Луну и исключая Землю) и даже доказывалось, что их столько и должно быть.
Кеплер пытался снова и снова найти простое соотношение, связывающее радиус одной орбиты с радиусом следующей. На основании наблюдений, проведенных Тихо Браге, Кеплер вычислил, что радиусы орбит в системе Коперника приближенно относятся как 8:15:20:30:115:195. Он пытался понять тайну этих отношений. Каждая догадка стоила ему немало труда, и каждый раз, когда оказывалось, что она не соответствует фактам, Кеплер честно от нее отказывался. Его мистически настроенный ум заставлял его считать, подобно древним грекам, что окружности — идеальные формы. Одно время он думал, что можно построить модель орбит, по которым движутся планеты, следующим образом: начертить окружность, вписать в нее равносторонний треугольник, затем вписать в этот треугольник еще окружность, в нее снова треугольник и т. д. Эта схема состоит из ряда окружностей, радиусы которых относятся как 2:1. Кеплер надеялся, что можно построить такие окружности, отношения радиусов которых будут соответствовать отношениям радиусов орбит, если пользоваться вместо треугольников квадратами, шестиугольниками и т. д.

Фиг. 73. Первая гипотеза Кеплера.
В правильный многоугольник (например, квадрат) мощно вписать окружность так, чтобы она касалась его сторон. Можно также вписать окружность, проходящую через вершины квадрата. Для этой окружности можно в свою очередь построить правильный многоугольник, в который она будет вписана. Отношение радиусов R / r этих окружностей будет одинаково для всех квадратов, другое значение R / r будет иметь место для всех треугольников. Геометрическая задача : каково будет отношение R / r для внутреннего и внешнего круга в случае квадрата? в случае треугольника?
Читать дальшеИнтервал:
Закладка: