Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1970. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1970
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия краткое содержание

Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Фиг 74 Те же две окружности полученные вращением правильного многоугольника - фото 67

Фиг. 74. Те же две окружности, полученные вращением правильного многоугольника (в данном случае треугольника).

Вращение происходит вокруг центра, в плоскости треугольника. Вершины его будут лежать на внешней окружности, а стороны, скользя, образуют внутреннюю окружность.

Фиг 75 Окружности образованные рядом правильных многоугольников разделенных - фото 68

Фиг. 75. Окружности, образованные рядом правильных многоугольников, разделенных внутренними и внешними окружностями.

Окружности можно подобрать так, чтобы их размеры соответствовали соотношениям размеров орбит планет. Однако даже при самом удачном выборе многоугольников не удается получить модели Солнечной системы.

Однако такие построения оказывались неудовлетворительными, и однажды он воскликнул: «Почему фигуры, помогающие получить орбиты в пространстве , должны быть плоскими? Надо пользоваться объемными фигурами». Он знал, что существует всего пять правильных многогранников. Греческие математики доказали, что их может существовать не более пяти. Попытавшись осуществить с помощью пяти таких многогранников систему из шести сфер, Кеплер нашел, что этим сферам будет соответствовать шесть определенных орбит.

Фиг 76 Вторая гипотеза Кеплера Этот рисунок иллюстрирует схему Кеплера - фото 69

Фиг. 76. Вторая гипотеза Кеплера.

Этот рисунок иллюстрирует схему Кеплера, который пытался так расположить правильные многогранники, чтобы получить наилучшее согласие с известными соотношениями размеров орбит различных планет.

Правильные многогранники

Сколько может существовать различных правильных многогранников?

Правильный многогранник — это геометрическое тело с одинаковыми правильными плоскими гранями, т. е.

— все ребра имеют одинаковую длину

— все плоские углы одинаковы

— все пространственные углы одинаковы

— все грани имеют одну и ту же форму

(на фиг. 77, а даны примеры многогранников, не удовлетворяющих этим требованиям). Например, куб — правильный многогранник.

Фиг. 77. Многогранники.

а— неправильные

Грани правильного многогранника могут представлять собой:

— равносторонние треугольники

— квадраты

— правильные пятиугольники

и т. д.

Опыт 1 Доказательство для граней представляющих собой квадраты Попробуйте - фото 70

Опыт 1. Доказательство для граней, представляющих собой квадраты .Попробуйте построить угол правильного многогранника из нескольких плоских прямых углов.

Мы уже знаем, что каждый угол куба образуется пересечением трех его граней. Возьмите три квадратных куска картона, положите их на стол, затем попробуйте приподнять их, ухватившись за то место, где встречаются все три угла квадратов.

Квадратные куски картона образуют при этом трехгранный угол куба. Поэтому мы можем сделать правильный многогранник, каждый угол которого будет образован пересечением трех квадратных граней. (Нам понадобится еще три квадратных куска картона, чтобы сделать весь куб). Можем ли мы сделать иной правильный многогранник с одной или двумя, или четырьмя квадратными гранями, пересекающимися между собой?

Из одного квадрата мы не можем образовать многогранный угол.

С двумя квадратами мы получим лишь плоский двугранный угол С тремя квадратами - фото 71

С двумя квадратами мы получим лишь плоский двугранный угол.

С тремя квадратами мы получим трехгранный угол куба.

С четырьмя квадратами нельзя получить угол многогранника; их углы, смыкаясь, образуют плоскость.

Таким образом, с помощью квадратов можно построить лишь один правильный многогранник — куб.

Опыт 2Попробуйте теперь образовать многогранник с помощью правильных - фото 72

Опыт 2.Попробуйте теперь образовать многогранник с помощью правильных пятиугольников . Сколько правильных многогранников можно получить, пользуясь гранями такой формы?

Попробуйте выполнить аналогичную задачу с шестиугольниками и другими многоугольниками. Попробуйте построить правильные многогранники с помощью треугольников.

Вывод.Только пять различных многогранников могут существовать в нашем трехмерном мире (фиг. 77, б ). (Обращаем ваше внимание на то, что для доказательств, которыми мы здесь пользовались, необходимы не только эскизы, сделанные карандашом, но и модели из картона.)

Фиг. 77. Многогранники.

б— правильные.

Казалось, что найдено чудесное объяснение того, почему существует только шесть планет. Строя систему планет, Кеплер начал со сферы для земной орбиты, построил вокруг нее додекаэдр так, чтобы его грани соприкасались со сферой, затем описал вокруг этого додекаэдра другую сферу так, чтобы она проходила через его вершины; на этой сфере должна была лежать орбита Марса; вокруг этой сферы он построил тетраэдр, затем сферу для Юпитера, затем куб, затем сферу для Сатурна. Внутри земной сферы он поместил еще два многогранника, разделенные сферами, чтобы получить таким образом орбиты Венеры и Меркурия. Относительные радиусы сфер, вычисленные на основе геометрии, находились в соответствии с известными в то время относительными радиусами орбит планет, и Кеплер был в восторге: « Огромную радость, которую я испытал от этого открытия, нельзя выразить словами. Я уже не жалел о потраченном времени и не испытывал усталости; я не боялся трудных расчетов, не считал проведенных за вычислениями дней и бессонных ночей, стремясь выяснить, соответствует ли моя гипотеза теории орбит Коперника, или же моя радость должна рассеяться как дым ».

Фиг. 78. Схема Кеплерас правильными многогранниками (заимствовано из его книги).

Относительные размеры орбит планет показаны шаровыми оболочками, отделяющими один многогранник от другого. Толщина этих шаровых оболочек подобрана таким образом, чтобы учитывался эксцентриситет орбит

Теперь мы знаем, что это был лишь случайный успех. В более поздние годы Кеплеру самому пришлось подгонять соотношения радиусов своих сфер, чтобы они соответствовали фактам, а когда спустя несколько столетий были открыты другие планеты, схема Кеплера оказалась совершенно несостоятельной [44] И сейчас имеется грубое эмпирическое правило, связывающее радиусы орбит друг с другом, так называемый закон Боде; но до недавних пор этому правилу не могли найти объяснения. . И все же этот «успех» привел Кеплера к дальнейшим великим открытиям.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия отзывы


Отзывы читателей о книге Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x