Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Название:Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Автор:
- Жанр:
- Издательство:Мир
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Юкава пытался найти механизм, посредством которого протоны и нейтроны удерживаются в ядрах. Эти силы ведут себя различно на разных расстояниях: с увеличением расстояния они уменьшаются от громадных значений внутри ядра до пренебрежимо малых значений сразу вне «кратера», причем гораздо быстрее, чем по закону 1/ r 2. Юкава убедился, что частицы с нулевой массой покоя, такие, как фотон, не могли бы играть роль связующего агента для таких сил. Чтобы объяснить известные об этих силах экспериментальные сведения, необходимо было приписать частицам некоторую массу покоя. Такие частицы могли бы обеспечить ядерные силы, рождаясь, переходя к другому нуклону и поглощаясь им прежде, чем самый искусный экспериментатор успевал бы заметить какие-либо изменения энергии. Попытаемся здесь дать оценку массы такой частицы. (Опираясь на твердо установленный в настоящее время факт, что такие частицы действительно существуют, будем использовать для этой частицы ее современное название — «мезон».)
Представим себе, что возникший мезон перед тем, как поглотиться, успевает в течение короткого времени совершить несколько оборотов над краем ядерной ямы — подобно электрону на боровской орбите, но с гораздо меньшими размерами. (Ниже будут рассмотрены другие предположения о волновом поведении мезона.) Для существования такой «орбиты» волна де-Бройля должна представлять собой стоячую волну в форме окружности радиусом r , причем в простейшем случае на длине этой окружности 2π r должна укладываться одна длина волны λ . Тогда
λ= 2π∙ r
Поскольку для любой частицы λ= h/ mv, то отсюда mv= h/2π∙ r.
Выше только говорилось о частице (не заботясь о деталях), масса же ее m и скорость v остаются неизвестными. Если сказать, что v равно с , то ясно, что это будет переоценка (если, конечно, только частица не является фотоном, масса покоя которого равна нулю, а скорость точно равна с ). Если же сказать, что m равна массе покоя мезона m 0, то это будет недооценкой. Для грубой прикидки скомбинируем оба эти приближения, надеясь, что при этом неточности скомпенсируются: напишем m 0 с вместо mv и получим
m 0 с = h/2π∙ r
Отсюда m 0 = h/2π∙ r∙c, и величину m 0можно оценить по известным значениям h, с и оценке радиуса ядра r ~= 1,4∙10 -15м:
m 0 = (6,62∙10 -34дж∙сек)/(2∙3,14∙(3,0∙10 8м/сек)∙(1,4∙10 -15м)) ~= 250∙10 -30кг
Сравните это значение с массой покоя электрона, равной примерно 0,9∙10 -30кг. Чтобы успеть просуществовать (недолго) в ядре и обеспечить соответствующие силы связи на соответствующих расстояниях, «обменная» частица должна обладать массой покоя в несколько сот электронных масс. Это означает, что она должна быть в 5 или 10 раз легче, чем самый легкий атом.
Вскоре после этого предсказания, казавшегося столь странным и фантастическим, промежуточные частицы были обнаружены среди треков, оставленных космическими лучами в камере Вильсона. Вначале это выглядело как поразительное подтверждение предсказания — даже величина массы была примерно правильной. Затем оказалось, что у новых частиц, явно нестабильных, время полураспада и другие характеристики не согласовывались с предсказаниями теории. Однако последующие экспериментальные поиски привели к обнаружению еще большего числа разных частиц. Некоторые из них оказались такими, какими их предсказал Юкава, и, как теперь думают, играют в ядрах роль необходимого связующего материала. В настоящее время для дальнейшего изучения можно создавать на ускорителях самые разнообразные мезоны, причем свободные, вне ядер.
Мезоны как вполне реальные частицы в настоящее время стали привычным понятием в субатомной физике. Мезонная теория играет важную роль в ядерной физике. Измерения мезонных масс (~270 электронных масс) [212]подтвердили гипотезу Юкавы, высказанную тогда, когда таких частиц никто не наблюдал и о существовании которых никто не догадывался.
[Замечания по поводу других моделей волнового поведения мезона в ядре:
1) Картина стоячей кольцевой волны выглядит слишком надуманной. С физической точки зрения лучше представлять себе мезон блуждающим внутри кратера потенциальной ядерной ямы. В этом случае представление о стоячей волне де-Бройля было бы более похожим на задачу о колеблющейся струне. При этом предположении простейшая стоячая волна должна иметь нулевую амплитуду на краях ямы (здесь располагаются узлы волны). При этом 1/ 2 λ равна диаметру ядерного кратера, равному 2 r , или λ = 4 r вместо λ= 2π∙ r.
2) При более последовательном рассмотрении нет необходимости привлекать ни волны, ни яму, а следует исходить из принципа неопределенности в том его виде, в котором он формулируется для энергии и времени:
Δ E∙Δ t= h/2π (по крайней мере)
Пусть один нуклон в ядре испускает мезон и передает его какому-нибудь другому нуклону, отстоящему от первого на расстояние где-то между 0 и 2 r . Изменение энергии Δ E , т. е. ее неопределенность в данный момент времени, равна энергии, затраченной на образование мезона, т. е. m 0 с 2. Предположим, что свой путь до другого нуклона, в среднем равный r , мезон проходит со скоростью с . На это уходит время, равное Δ t= r/ c. Если мезон живет достаточно долго, успевая пройти этот путь и оставаясь незамеченным экспериментатором, то Δ E ∙Δ t должно в точности равняться h /2π, и, следовательно,
( m 0 с 2)∙ r/ c= h/2π
Отсюда следует ранее найденная оценка массы мезона m 0= h/2π∙ r∙ c]
Видимые атомы
Для того чтобы ознакомиться с последним в этой главе разделом экспериментальной физики, оставим фантазирование и посмотрим на фотоснимки отдельных атомов, хитроумные способы получения которых теперь можно обсудить с техническими подробностями. На фиг. 215 изображена фотография атомов, расположенных на самом острие вольфрамовой иглы. Изображение создается ионами гелия, рассеянными острием иглы, на флуоресцирующем экране. На фиг. 212 показана установка, сконструированная Эрвином Мюллером [213].

Фиг. 212. Ионный микроскоп Мюллерадля наблюдения атомов.
На рисунках даны простейший вид прибора и пояснения принципа его действия. Для более подробного ознакомления см. Scientific American, 196, June 1957.
Читать дальшеИнтервал:
Закладка: