Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1973. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1973
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

H 2 SO 4—> H ++ H ++ SO 4 -,

SO 4 -—> SO 4+ 2 заряда -,

H ++ H +—> H 2+ 2 заряда + ,

SO 4 + H 2O —> O+ H 2 SO 4,

H 2 SO 4—> H ++ H ++ SO 4 -и т. д.

Таким образом, кислота не расходуется, и по окончании длительного электролиза ее остается столько же, сколько было вначале, но количество воды уменьшается за счет появления водорода и кислорода.

Электролиз и ионы

При электролизе раствора сернокислой меди ионы Gu ++отдают отрицательному электроду свои заряды и осаждаются на нем (независимо от того, из чего он сделан), превращаясь в незаряженные атомы. Ионы SO 4 - идут к другому электроду и, если он изготовлен из меди, то взаимодействуют с ним, образуя сульфат меди. Таким образом, суммарный эффект состоит в том, что чистая медь просто-напросто переносится с одного электрода на другой, без какой-либо убыли сульфата меди. В результате один электрод омедняется, а с другого медь постепенно переходит в раствор.

Фиг. 169. Ионы, из которых составлены кристаллы поваренной соли, при растворении соли переходят в раствор.

Если к раствору приложено электрическое поле, то эти ионы становятся носителями электрического тока. (Изображение кристалла соли взято из статьи П. Р. Роуленда , опубликованной в Science News, № 15, март 1950 г.)

Итак, мы узнали, что растворы кислот, солей и т, и, содержат ионы, например,

Когда к таким растворам подводится постоянное напряжение, то создается электрическое поле, заставляющее ионы двигаться через раствор. Ионы с зарядом «+» движутся в обычном для электрического тока направлении (от «+» к «—»). Ионы с зарядом «—» перемещаются в обратном направлении. Перенос электрического тока осуществляется обоими типами зарядов. Если хотите, движение этих зарядов и есть электрический ток. Увлекаемые электрическим полем ионы дрейфуют в противоположных направлениях (чаще всего с различной скоростью), одновременно участвуя в хаотическом движении молекул воды. (Вблизи электрода электрическое поле очищает раствор от ионов одного знака, и ионы другого знака вынуждены спешить, чтобы самим осуществить весь электрический ток.) Поскольку каждый из ионов обязательно достигает своего электрода, то в конце концов его заряд нейтрализуется (фактически ион теряет лишние или приобретает недостающие электроны). Заряд уходит дальше по электрической цепи, а образовавшиеся незаряженные атомы вступают в контакт с водой и металлическим электродом и ведут себя так, как им велит их химическая природа. Например, ионы меди (которые в растворе имеют голубой цвет), попадая на электрод, захватывают два электрона и превращаются в два атома красной меди, прочно пристающие к электроду. В отличие от них ионы натрия, становясь нейтральными атомами металлического натрия, взаимодействуют с водой, вытесняя из нее водород и образуя щелочь едкий натр.

Законы Фарадея

Большей части наших сегодняшних представлений об ионах и электролизе мы обязаны Майклу Фарадею, который получил их практически из ничего, на самой заре экспериментов с электрическими токами. В серии замечательных опытов, основанных на точном предвидении, он изучил явления, происходящие при электролизе (которому он и дал это название), и свел все их разнообразие к двум простым законам, впоследствии заслуженно получившим его имя. Открытые им законы (~ 1833 г.) можно сформулировать следующим образом:

I. Независимо от состава раствора и материала электродов масса вещества, образованного на электродах, прямо пропорциональна произведению ток время, или количеству электричества.

II. При одинаковом количестве электричества масса вещества, полученного на различных электродах, пропорциональна

ХИМИЧЕСКОМУ ЭКВИВАЛЕНТУ ВЕЩЕСТВА, т. е.~ АТОМНЫЙ ВЕС / ВАЛЕНТНОСТЬ

Ионы в растворе

Имеются убедительные свидетельства того, что участвующие в электролизе ионы возникают в растворе сразу, и растворенные молекулы не ждут, пока их разобьет на части электрическое поле, которое мы прикладываем к раствору, чтобы пошел электрический ток. Это доказывается следующими наблюдениями:

1) Чтобы начался электролиз, достаточно лишь небольшого постоянного напряжения. (Некоторое дополнительное начальное напряжение связано с эффектом обратного тока, который создается продуктами электролиза, образующими мельчайшие источники электрического тока около электродов. При электролизе раствора сернокислой меди с медными электродами такого эффекта не обнаруживается, и ток следует закону Ома, однако если электроды изготовлены из инертного материала, например платины, то эффект существует . Он проявляется также и при электролизе воды. См. опыты 17 и 18 в гл. 32 .)

2) Когда мы пытаемся измерить молекулярный вес растворенной соли (по ее «осмотическому давлению» или изменению точки замерзания раствора), мы замечаем, что растворенных частиц стало почти вдвое больше по сравнению с тем, чего можно было бы ожидать, если бы молекулы оставались целыми. Это говорит о том, что они расщепились на ионы. С другой стороны, для растворов, которые не проводят электрического тока, например растворов сахара, молекулярный вес растворенного вещества получается нормальным, потому что оно не образует ионов.

3) Такое утверждение хорошо согласуется с известными химическими свойствами вещества. Выпадение твердого осадка или образование газа, пузырьками выходящего наружу, как мы себе представляем, происходит в результате встречи ионов противоположного знака, которые нейтрализуют друг друга и соединяются с образованием продукта, уходящего из раствора. Ионы — это активные посредники большинства химических реакций, происходящих в растворах.

Число Фарадея и отношение е / М для ионов

Измерения показывают, что для получения 1,008 кг водорода необходимо 96 500 000 кулон электричества. Тот же самый заряд дают 35,4 кг хлора, (16,00/2) кг кислорода или (63,6/2) кг меди. (Количество электричества, необходимое для получения одного химического эквивалента вещества, выраженное в граммах, мы называем числом Фарадея или сокращенно «фарадеем», а если масса вещества выражена в килограммах, то «килофарадеем».)

Рассчитаем отношение заряд / масса для одного иона водорода (протона), предполагая, что все они одинаковы :

е/М = 96 500 000/1,008 = 95 700 000 кулон/кг

Отношение заряда к массе для иона меди равно

3 034 000 кулон/кг.

(Обратной величиной: 0,000 000 329 кг меди/кулон мы уже пользовались в гл. 32 , когда давали определение ампера.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра отзывы


Отзывы читателей о книге Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x