Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Название:Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Автор:
- Жанр:
- Издательство:Мир
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Инертные газы — гелий, неон, аргон — даже не были известны в период создания периодической системы. Когда спустя примерно тридцать лет они были открыты, для них пришлось учредить отдельный столбец. Но, получив «прописку», они образовали специфическую группу, целое семейство химических тунеядцев — полностью инертных, не способных образовывать какие-либо соединения. Сейчас их принято называть «благородными газами». В отличие от водорода, кислорода и других газов, которые существуют в форме Н 2, О 2и т. д., их атомы не способны даже соединяться в молекулы и проводят свою жизнь в одиночестве. Последнее утверждение на первый взгляд может показаться просто выдумкой. В самом деле, если эти газы не образуют химических соединений, если они позволяют себе игнорировать химию, то можно ли вообще установить их атомный вес и доказать, что он совпадает с молекулярным? И все же мы уверены, что это так.
Вы уже видели в гл. 30 , как измерения удельной теплоемкости, опиравшиеся на надежную физическую теорию, позволяют твердо установить, что молекулы благородных газов содержат по одному атому.
Периодическая система химических элементов удобна не только для запоминания их свойств или выбора последовательности изучения, но обладает всеми достоинствами, присущими самым замечательным теориям и концепциям. Она позволила предсказать свойства еще не открытых элементов, для которых остались пустые клетки. Одновременно периодическая система ставит перед нами ряд новых проблем — от причин нарушения расположения элементов по возрастанию атомного веса [95]до кардинальных вопросов о структуре атомов, знание которой позволило бы объяснить саму периодичность свойств элементов.
Часть периодической системы элементов приведена на фиг. 168. Полную систему с более подробными объяснениями и поучительными описаниями поисков отсутствующих элементов, свойства которых она предсказывала и которые в конце концов заполнили ее пустующие клетки, вы найдете в учебниках химии.
Фиг. 168. Периодическая система элементов Менделеева.
Атомные номера в периодической системе химических элементов
Первоначально система химических элементов была составлена по возрастанию атомного веса. После того как такое расположение было признано удачным, казалось естественным присвоить каждому элементу порядковый номер, аналогично тому как поступает филателист, нумеруя по порядку свои марки [96].
С химической точки зрения эти номера очень удобны, и мы запишем их над каждым элементом нашей системы. (Из книг по химии вы узнаете, что эти номера имеют гораздо более глубокое значение: они соответствуют числу электронов в атоме. Однако это объяснение дается уже атомной физикой, и мы будем рассказывать о нем в последующих главах.) Таким образом, мы приписываем водороду номер 1, гелию номер 2… и так вплоть до элемента номер 92 — урана.
Длительное время мы не знали, считать ли уран последним элементом периодической системы или за ним существуют другие элементы. Сейчас мы уже научились получать элементы с номерами 93, 94 и т. д., бомбардируя атомными частицами тяжелые атомы. Возникла новая, «ядерная» химия, перспективы которой поразительны. Мы можем заглянуть еще дальше и предугадать свойства атомов, гораздо более тяжелых, чем любые известные нам сейчас. Как и атомы с номерами от 84 до 102, они будут нестабильны (радиоактивны), причем должны распадаться настолько быстро, что не стоит удивляться, если они вообще не существуют в природе [97].
Современные представления об атомном номере
В наши дни мы рассматриваем атомный номер как основную характеристику химического элемента. Мы знаем, что он представляет собой величину положительного электрического заряда атомного ядра, измеренную в единицах заряда электрона. Таким образом, атомный номер говорит нам, сколько электронов содержится в электрически нейтральном атоме. Распределение и энергия связи этих электронов зависят от заряда ядра, и поскольку поведение элемента определяется числом внешних электронов, которыми его атомы обмениваются в химических реакциях, то можно сказать, что химические свойства элемента зависят от заряда ядра, т. е. атомного номера. Внутренние электроны атома, крепко удерживаемые его ядром, почти не принимают участия в химических реакциях, за исключением разве лишь самых легких атомов, в которых число электронов невелико. Поэтому сближение атомов, происходящее при образовании химического соединения, не может создать силы, достаточные для того, чтобы заставить внутренние электроны заметно изменить свои состояния. Однако внутренние электроны ответственны за испускание и поглощение рентгеновских лучей. Если вырвать из атома внутренний электрон, например бомбардируя его другими атомными частицами, то как только соседний электрон займет его место, атом испустит рентгеновский квант, длина волны которого характеризует заряд атомного ядра . Таким образом, изучая рентгеновские лучи, испускаемые мишенями, изготовленными из различных элементов, мы можем определить атомный номер этих элементов. Поступая так, мы узнаем положение элемента в периодической системе, не прибегая к измерению атомных весов, и поэтому можем надеяться, что не обойдем ни одного из них. Для этого способа безразлично, находятся ли элементы в свободном состоянии или в соединении с другими. Он с абсолютной достоверностью дает нам атомный номер, т. е. заряд атомного ядра, свой для каждого элемента.
Атомы радиоактивных элементов неустойчивы, и хотя они обладают всеми свойствами, присущими отдельному элементу, — определенными химическим поведением, атомным номером и не обнаруживают никаких признаков делиться на еще более элементарные составные части, эти свойства сохраняются у них не вечно. Один за другим атомы радиоактивного элемента внезапно превращаются в атомы другого элемента. Спустя некоторое время количество первоначального (родительского) элемента сокращается за счет появления соответствующего количества другого (дочернего) элемента. Последний обладает всеми свойствами самостоятельного химического элемента (поэтому в свою очередь тоже может быть радиоактивным) и занимает соответствующее место в другом столбце периодической системы. В момент превращения атом выбрасывает мельчайшие осколки — альфа- и бета-частицы (а часто и гамма-лучи), обладающие колоссальной энергией. Излучение, или «радиация», таких частиц нестабильными атомами было первым обратившим на себя внимание свойством этих элементов, поэтому процесс самопроизвольного распада атомов и был назван радиоактивностью (см. гл. 39 и 43 ).
Читать дальшеИнтервал:
Закладка: